动点d在边ac上,以bd为边作等边三角形bde

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:16:14
动点d在边ac上,以bd为边作等边三角形bde
在三角形ABC中AB=AC,点D是边BC上一点以AD为一边在AD的右侧作三角形ADE使

α+β=180°理由:∵∠DAE=∠BAC∴∠DAE-∠CAD=∠BAC-∠CAD即∠BAD=∠CAE∵AB=ACAD=AE∴△ABD≌△ACE(SAS)∴∠ACE=∠ABD∵∠BAC+∠ABC+∠A

在三角形ABC中,AB=AC,点D是BC边上的中点,以点BD为直径作点D,交边AB于点P,连接PC交于点E,且AE=DE

(1) 连接OP、 OE,因O为BD的中点、E为AD的中点,故EO为△ABD的中位线,则EO‖AB,得∠POE=∠OPB、 ∠EOD=∠PBO.由OP=OB知∠OPB=∠

如图,已知⊙O的半径为1,点C在直径AB的延长线上,BC=1,点P是半圆上的一个动点,以PC为边作正三角形PCD,且点D

(1)在△OPC中,由余弦定理得PC2=OP2+OC2-2OP•OC•cosθ       =1+4-4cosθ=5-4cosθ.

如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE

(1)证明:连接AD,∵AB是直径,∴AD⊥BC,又∵BD=DE,∴∠BAD=∠EAD,而AD=AD,∴△ABD≌△ACE,∴AB=AC,即△ABC是等腰三角形;(2)∵AD⊥BC,即△ADC为直角三

如图,已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作

如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH‖PF,∵∠B=∠EPA=60°,∴BH‖PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也好为PH中

(2009•徐汇区二模)如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠ED

(1)∵∠EDF+∠FDC=∠B+∠DEB,∠EDF=∠B,∴∠FDC=∠DEB.∵AB=AC,∴∠C=∠B.∴△CDF∽△BED.(1分)∴CFBD=CDBE.即CF4=810−6.(1分)∴CF=

三角形abc是等边三角形,d、e分别是cb、ac上的点,且bd=ce,以ad为边作等边三角形adf,连接ef,

1.我的思路是,由题设不难证三个三角形ABD,BCE,ACF全等,进而知三角形CEF为正三角形,进而知四边形BDFE的两组对边相等,即四边形BDFE为平行四边形,故BE平行DF.BE=AD=DF=AF

已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.

(1)当CP经过△ABC的重心时CP是AB边上的中线因为,∠ACB=90°所以CP=BP=AP所以∠PCB=∠PBC因为BD⊥CP,垂足为点D所以∠BDC=∠ACB=90°所以:△BCD∽△ABC.(

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.

(1)证明:∵AB=AC,点D是边BC的中点,∴AD⊥BD.又∵BD是圆O直径,∴AD是圆O的切线.(2)证明:连接PD、PO,∴PD∥AC,已知△ABC中,AB=AC,∴BD=DC,∴PB=PD,∴

如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC

1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图,已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作

PS:希望我的回答能够帮助你~请采纳是我对我的信任和肯定...

如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,D为线段AB上一个动点,以BD为边在△ABC外作等边

解题思路:本题考查勾股定理,二次函数最值,请看详细解答过程。解题过程:

在三角形ABC中,角BAC=90度,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.如果BD=A

还需要补充说明:D、E在AC的两侧,否则需要求证的结论不成立.[证明](1)∵AB=AC、∠BAC=90°,∴∠ACD=45°.∵ADEF是正方形,∴∠AED=45°,又∠ACD=45°,∴A、D、C

如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,DE交AB边于

第一问:y(10-x)=32y=32/(10-X)X小于6.8,大于0.X=6.8时,F点与A点重合;X=0时,E与A重合.第二问:当DE=DF时,三角形EBD与三角形DCF全等.BE=DC=8.不会

如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于

ED平行于AC所以BE:BA=BD:BC=4:12=BE:10所以BE=10/3不知道对不

△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别叫AB于E,交射

1,∵∠BDF是△CDF的外角∴∠BDF=∠C+∠CFD又AB=AC,∠B=∠C∴∠BDF=∠B+∠CFD又∠BDF=∠BDE+∠EDF又∠EDF=∠B∴∠BDE=∠CDF∴△BDE∽△CFD(两角相

一道初三数学题求秒答如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=

(1)∵∠EDF+∠FDC=∠B+∠DEB,∠EDF=∠B,∴∠FDC=∠DEB.∵AB=AC,∴∠C=∠B.∴△CDF∽△EBD.(1分)∴CFBD=CDBE.即CF4=810-6.(1分)∴CF=

如图,已知△ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

证明:1、∵△ABC、△ADF都是等边三角形∴∠BAD+∠DAC=∠DAC+∠CAF=60ºAB=AC,AD=AF∴∠BAD=∠CAF∴△ABD≌△ACF(SAS)∴CE=BD=CF∠ABD