判断无向简单图任意两点是否连通,如果连通,给出基本路径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:33:12
|V(G)|-|E(G)|=1即点数比边数多1.证明思路:数归即可.|V(G)|=1显然成立,若|V(G)|=k成立,当|V(G)|=k+1时必有一点度数为1将此点与连接此点的边删去,即证
用深度优先搜索,从给定节点开始,遍历一遍所有节点,如果另一个节点遍历到了,就连同,反之不连通如果要算出所有节点,则每个节点都执行一次DFS,把结果存在一个二维数组里,就能查询了!
就是9个这个可以构造性的方法来说明构造:这样的图至少有9个顶点证明:假设有8个顶点,则8个顶点的无向图最多有28条边且该图为连通图连通无向图构成条件:边=顶点数*(顶点数-1)/2顶点数>=1,所以该
用扩大路径法,随意选取一个点,每需和其他一个点连接需要至少一条边,因为他是连通图,所以至少有N-1条边,只有N-1条边的时候每条边都是桥所以可知他就是一棵树
有什么要求吗?如果没有任何要求那就很简单了生成在[m,n]中的随机数会吧随机生成总结点数ni=0;loopi生成第i个节点如果i>1对[0,i-1]每个节点随机生成是否连通关系i++直到i==n时退出
无向简单图就是指,没有自环、没有平行边的无向图.满足|E|
答:结点数v与边数e满足e=v-1,关系的无向连通图就是树
给你个伪代码:想法:用深搜.从v开始,往下找,如果到达的一个点与v相同,则有回路,程序中没有保存路径,你可以自己添加intmap[N][N];用邻接矩阵存图的关系,map[i][j]=1,表示i->j
1.证明:设简单连通无向图G有n个点,m条边,构造一棵生成树,首先选取G中任意指定的一条边,然后再陆续选取其它的边,如果所选的一条边与已选上的边组成回路,这条边就不能选,这样选下去,选够n-1条边时,
1.真.2.假.3.4.5.真.6.假7.假.8.假.9.假.10.假.11.真.12.13.14.15.仅供参考
首先要判断无向图中是否带有循环的.如果生成树是连通的,则去掉任何一条边都不连通.生成树是连通的,并且|E|=|V|-1.树中任何两点都由一个简单的通路连接.
对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边
首先证明G中有割点,则G不是汉密尔顿图,反证法,如果图G是汉密尔顿图,则必存在汉密尔顿圈(回路),即所有结点均在一个回路中,此时删除任意一个结点图G必连通,于是它的任何点均不是割点,矛盾,即有割点的图
无向图g是树当且仅当无向图g是无回路的连通图.
强连通分量好像是指可以双向连通的吧...后面的不记得了这是编译原理的东西?很早以前学的...都忘记了
图的Laplacian矩阵的0特征的重数为1
intCount(GraphG){intcount=0;for(v=0;v
选B,就1个连通分量.因为这个图本身就是连通图,所以是一个连通分量嘛~如果这个图不是连通的,那么它就至少有两个连通分量