删除题项后多元线性回归显著了
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:06:57
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
最后一个
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
x=[143145146147149150153154155156157158159160162164]';X=[ones(16,1)x];增加一个常数项Y=[88858891929393959698
matlab里面有提供回归模型的全套解决方案,就是线性拟合的工具箱,cftool,在命令窗口输入cftool命令,可以调出工具箱,你可以自己摸索下,都是简单的英语,相信你摸索一会儿就会了.再问:我需要
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
显著性在你给的条件下没有定义.首先OLS的多元回归,实际上是这样:解方程y=b0+b1x1+b2x2,如果你的数据多于m+1个(我们就以你的这个例子说吧,就是多于3组数据,比如100组),这个时候方程
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
是依据误差的平方和最小这个条件来求回归系数的.比如一元的,y=ax+bE=∑(y-yi)^2=∑(axi+b-yi)^2将a,b看成变量,则E的最小值需有其偏导数为0,即E'a=2∑(axi+b-yi