分离常数法 求函数y=cx d ax b(a≠0)的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:26:00
分离常数法 求函数y=cx d ax b(a≠0)的值域
高中函数值域分离常数法

【分离常数法】1.求函数f(x)=(3x-1)/(2x+3)的值域f(x)=(3x-1)/(2x+3)=[(3/2)(2x+3)-11/2]/(2x+3)=3/2-11/[2(2x+3)]x≠-3/2

一道高中数学题:求函数y=2x/5x+1的值域,请分离常数法 请写详细过程 谢谢

y=2x/5x+1=(2x+0.4-0.4)/(5x+1)=0.4-(0.4/(5x+1))因此该函数的值域是y≠0.4

分离常数法求值域的问题

1.f(x)=-2x+3/(x+1)=[-2(x+1)+5]/(x+1)=-2+5/(x+1)f(x)≠-22.f(x)=4x+2/(3x+1)=[4/3(3x+1)+2/3]/(3x+1)=4/3+

高一数学函数关于分离常数法求值域

形如y=(ax+b)/(cx+d)的都可以用常数分离法将分子中的一次项设成t(cx+d)则有y=[t(cx+d)+m]/(cx+d)与原分式比较求出t和m则分离出y=t+m/(cx+d)

y=(1-x)/(2x+5) 如何用分离常数法求值域?

将分子配成分母的形式,再分离y=(1-x)/(2x+5)=[-0.5(2x+5)+3.5]/(2x+5)=-0.5+3.5/(2x+5)∵3.5/(2x+5)≠0∴y≠-0.5

怎么用分离常数法求函数的值域?

y=[2(x+1)-3]/(x+1)=2-3/(x+1)3/(x+1)≠0,所以y≠2总结:若y=(cx+d)/(ax+b),则x≠-b/a,y≠c/a(x无特殊范围限制)

形如Y=ax+b/cx+d(c≠0)的函数,利用反函数法或分离常数法 求y=(3x-1)/(2x+1)的值域

分离常数法:y=(3x-1)/(2x+1)=(3x+1.5-2.5)/(2x+1)=1.5-2.5/(2x+1)=1.5-1.25/(x+0.5)因为1.25/(x+0.5)0,所以y的值域为y1.5

形如y=(ax+b)/(cx+d)的函数要用分离常数法求定义域和值域,公式为y=a/c+(b-da/c)/(cx+d),

你想分离出常数,c不得0,a就不能得0.d的0的话,公式就是y=a/c+b/cx再问:c不能等于0,a为什么就不能等于0了?再答:a=0的话y=b/(cx+d)分离不出常数再问:d等于0的时候分离出来

用分离常数法求函数值域

y=(1-2x²)/(1+2x²)=-(2x²-1)/(2x²+1)=-[(2x²+1)-2]/(2x²+1)=-[1-2/(2x²

求函数的值域,它用的是分离常数法,

第一步是分子分母都用十字相乘法分解因式,发现分子分母有公因式(x-1)由于(x-1)出现在分母上,所以不为0,所以这里x≠1,然后约掉(x-1),但后面一定要写上x≠1,因为化简后的函数一定要与原来等

用分离常数法怎样求函数解析式的值域?

在含有两个量的关系式中,要求一个量的取值范围,可以将该量和另一量分离(即该量和另一量各在式子的一端),从而求出该量的取值范围.这种方法可称为分离常数法.下面通过一个例子来说明:例:y=3x/(x+9)

用分离常数法求值域y=(x方+2x+2)/(x+1)

y=(x²+2x+2)/(x+1)=[(x+1)²+1]/(x+1)=x+1+[1/(x+1)]≥2当且仅当x+1=1/(x+1)时即x=0或x=-2时取到等号再问:2是哪来的啊?

怎么用分离常数法求值域

好久没做过的都忘记了呢

y=3x-5/2x+1用分离常数法求值域

应该是y=3x^2-5/2x+1吧.y=3x^2-5/2x+1y=3[x^2-5/6x+(5/12)^2]+1-3*(5/12)^2y=3(x-5/12)^2+23/48所以值域是[23/48,正无穷

y=2x+1/2x+7分离常数法求值域

用分离常数法,你的题目是y=(2x+1)/(2x+7)么?y=(2x+1)/(2x+7)=1-6/(2x+7)=1-3/(x+7/2)所以值域为(-∞,1)∪(1,+∞)

用分离常数法求值域及最值:y=10^(2x/5x+1)

2x/(5x+1)=(2x+2/5-2/5)/(5x+1)=2/5-2/[5(5x+1)]∵2/[5(5x+1)]≠0,所以2/5-2/[5(5x+1)]≠2/5则y=10^(2x/(5x+1))≠1

y=(x^2-1)/(x^2+1)用分离常数法求值域

y=(x^2+1-2)/(x^2+1)=1-2/(x^2+1)x^2+1>=10

用分离常数法求值域

解题思路:分离常数法解答。解题过程:很高兴为你解答,如果对老师的解答不满意,请在讨论区给老师说明,老师一定会尽全力帮你解答!祝你暑假愉快!最终答案:略

怎么用分离常数法求函数值域

例如:Y=(ax+b)/(cx+d),(a≠0,c≠0,d≠0),其中a,b,c,d都是常数.例:y=x/(2x+1).求函数值域分离常数法,就是把分子中含X的项分离掉,即分子不X项.Y=X/(2X+

用分离常数法解分式函数Y=(3x+4)/(x+2)分离后是3+[(-2)/(x+2)]还是3-[(2)/(x+2)

y=(3x+4)/(x+2)=【3(x+2)-2】/(x+2)=3--2/(x+2)(x≠-2)3+[(-2)/(x+2)]还是3-[(2)/(x+2)]是一样的.要是问函数在第几个象限,先会判断渐进