函数y=xe^x的拐点是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:57:54
对此函数求二阶导y=x^4-2x^3+1y`=4x^3-6x^2y``=12x^2-12x凹区间为二阶导数大于0的区间即12x^2-12x>0解得x>12或x
y=3x-x^3y'=3-3x^2=-3(x+1)(x-1)当x∈(-∞,-1)时,y'<0,单调减;当x∈(-1,1)时,y'>0,单调增;当x∈(1,+∞)时,y'<0,单调减.y''=-6x当x
再问:设函数f(x)=x的平方(x的9次方+x的3次方+1),求高阶导数f的12次方(x)再答:0,多项式才11次方
y'=e^x(1+x),因e^x恒大于0,故由y'=0,可得x=-1x0,故增函数区间(-1,inf)x=-1时,y'=0,故可取得极小值-1/ey''=e^x(2+x),当x0,故故区间(-2,in
f(x)=xe^(-x)f'(x)=e^(-x)-xe^(-x)=(1-x)e^(-x)f''(x)=-e^(-x)-(1-x)e^(-x)=-(2-x)e^(-x)方程f'(x)=0,即(1-x)e
再问:�ҵĴ
y'=e^[(-1/4)*(x^2)]+x(-1/2)xe^[(-1/4)*(x^2)]=(1-x^2/2)e^[(-1/4)*(x^2)]=0可以得到x=正负sqar(2)y''=-xe^[(-1/
y'=x'*e^(-2x)+x[e^(-2x)]'=e^(-2x)+xe^(-2x)*(-2x)'=e^(-2x)-2xe^(-2x)=(1-2x)e^(-2x)
分步积分.先把e^-2x放进去.再问:可以写具体过程吗?再答:看我插入的图片。
y'=e^(-x)-xe^(-x)=e^(-x)(1-x)=0,得:极值点x=1y"=-e^(-x)-e^(-x)+xe^(-x)=e^(-x)(x-2),得:拐点x=2x0;x-->-∞时,y-->
在(-∞,1)单调递增,[1,+∞)单调递减,极值e-¹,拐点(2,2e-²),(-∞,2)上凸,(2,+∞)下凹
先求一阶导和二阶导,f′(x)=e-x(1-x),f″(x)=e-x(x-2),f′(x)=0⇒x=1,f″(x)=0⇒x=2.列表:x(一∞,1)1(1,2)2(2,+∞)y′+极大值--y″--拐
驻点是一阶导数为0的点,拐点是二阶导数为0的点驻点可以划分函数的单调区间,即在驻点处的单调性可能改变而在拐点处则是凹凸性可能改变即拐点一定是驻点,驻点可能是拐点.不会算再找我
解y=xe^xy'=(x)'e^x+x(e^x)'=e^x+xe^x
y'=e^(2x)+2xe^(2x)=(1+2x)e^(2x)=0,得极值点x=-1/2当x>-1/2时,单调增
这是一道选择题,如果用各位的解题方法考研就要悲剧了,这个题很不为函数的拐点将y=(x-1)*(x-2)^2*(x-3)^3*(x-4)^4对
y=xe^x求曲线的凹凸区间与拐点是吗?设y=xe^(x/2)y‘=x'e^(x/2)+x[e^(x/2)]'=e^(x/2)+xe^(x/2)*(1/2)=e^(x/2)(1+x/2)y''=[e^
凹凸区间和拐点就是要求二次导第一次求导y'=e^(-x)-xe^(-x)第二次求导y’'=(-2+x)e^(-x)所以在(-无穷,2)为凸在(2,+无穷)为凹拐点为(2,2e^(-2))
给你个图,也算是提示吧.