函数f(x)=lg(ax²+2x 1)的定义域为R
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:00:01
答:f(x)=lg(ax²-ax+1)的值域为R,说明真数ax²-ax+1包含所有的正数.所以g(x)=ax²-ax+1的值域至少包含(0,+∞)因此抛物线g(x)=ax
根据题意可知:ax²+ax+1>0在(-2,1)内是恒成立的,否则该函数没有意义,令y=ax²+ax+1,则:y=a(x+1/2)²+(4-a)/4当a=0时,y=1>0
ax^2-x>0,且有y2=ax^2-x也为增函数a=0,在区间[2,4]上ax^2-xa>=1/8不成立a>0,对称轴1/2aa>=1/4并且y2(2)>0,y2(4)>0即4a-2>0,且16a-
1、令ax-1=t,则x=(t+1)/a,于是f(ax-1)=lg^[(x+2)/(x-3)]可变形为:f(t)=lg^{[(t+1)/a+2]/[(t+1)/a-3]}=lg^[(t+1+2a)/(
设:t=ax-1则:x=(t+1)/a(x+2)/(x-3)=[(t+1)/a+2]/[(t+1)/a-3]=(t+1+2a)/(t+1-3a)所以,f(t)=lg[(t+1+2a)/(t+1-3a)
lg(ax)*lg(a/x^2)=(lg(a)+lg(x))(lg(a)-2lg(x))=0.得知判别式(lg(a))^2-4*2*(9/8-(lg(a))^2)
对数有意义,ax-2>0ax>20再问:是a的x次方。。再答:哦,那你没写清楚,呵呵。lg(a^x-2)对数有意义,a^x-2>0a^x>2lg(a^x)>lg2xlga>lg20
(1)要使x2-2ax+a>0恒成立,只要△=4a2-4a<0,---------------(2分)得0<a<1.------------------------------------------
函数f(x)=lg(ax)×lg(a/x²)(1)当a=0.1,求f(1000)的值f(x)=lg(0.1*1000)×lg(0.1/1000²)=2*(-7)=-14(2)若f(
真数恒大于0a=0,真数2x+1不保证大于0,不合题意a不等于0,则抛物线开口向上,a>0且最小值大于0,即和x轴没有交点,所以判别式小于04-4a1所以a>1值域是R则真数要取到所有的正数a=0,真
x^2-ax-1的定义域未知而函数f(x)=lg(x^2-ax-1)在(1,+无穷)上是增函数故有1*1-a-1>=0x^2-ax-1的对称轴x=a/2
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
1)f(2-x)=lg|a(2-x)-2|=lg|2a-2-ax|2)a=1
f(x)=lg(ax)*lga/x^2=(lga+lgx)(lga-2lgx)=-2(lgx)^2-lgalgx+(lga)^2令t=lgx,1≤x≤10,则0≤t≤1f(t)=-2t^2-lgat+
y0=x^2+ax-a-1Ay=lgy0BA式,对称轴x=-a/2:1,由A函数图像知:x≤-a/2时x↑y0↓.B是单调增函数,y0↓y↓即x↑y↓;而x≥-a/2时x↑y0↑,结合B单调增得x↑y
(1)f(x)=lg(ax)•lg(x/a^3)在区间[1,10]上连续,因此可导,f(x)′=lg(x^2/a^2)/(xln10),函数的驻点满足f(x)′,即x=a(a∈[1,10]
(1)ax平方+2x+1=y的图像必须与x轴无交点,且a大于零,且4-4a小于0,据此求得a大于1(2)同理,必须与x轴有交点,求得a大于0小于1
答:f(-3)=lg(1-3a)-lg(1+9)=-1即lg(1-3a)-1=-1lg(1-3a)=0,解得a=0.f(x)=-lg(1-3x)因为f(t)=lg(t)为增函数,所以f(t)=-lg(