其中l是由抛物线y=x^2和y^2=x所围成的区域的正向边界曲线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:10:03
其中l是由抛物线y=x^2和y^2=x所围成的区域的正向边界曲线
计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2

(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格

计算∫L((x+y)dx+(x-y)dy),其中L是抛物线y=x^2从点(0,0)到(1,1)的一段弧.

设P=x+y,Q=x-y因为满足Q'x=P'y所以原积分与路径无关,可以选择两点之间的线段M,y=x,x从0到1来进行积分.原积分=∫(x+y)dx+(x-y)dy=∫M(x+x)dx+(x-x)dx

高数 二重积分的计算题目:∫∫ x√y dxdy 其中D是由两条抛物线 y=√x ,y=x^2所围成的闭区域.D可以用不

描述是这样X型:穿过D内部且平行于y轴的直线与D的边界相交不多于两点Y型:穿过D内部且平行于x轴的直线与D的边界相交不多于两点具体来讲就是先对y积分再对x积就是X型.这时y=y(x)Y型就是反过来x=

已知抛物线L1:Y=X的平方+2x和L2:Y=-X的平方+a.如果直线L同时是L1和L2的切线称L是L1与L2的公切线.

1.分别设切点并求导,表示出切线方程,再令其截距与斜率均相等,消元得方程①,由题意知△=0,解得….2.①中,根据韦达定理列方程组,结合原方程组可解得公切线中点坐标,为一定值(数值我忘了,好象有个-0

求∮(下标L)(2xy-x^2)dx+(x+y^2)dy ,其中L 是由y=x^2 和x=y^2 所围成的区域的正向边界

这是微积分范畴的问题,我知道但是写得麻烦,你直接到图书馆找微积分2还是3,叫做曲线积分的那一章.

二重积分(要详解)∫∫Dx*y^(1/2)dσ,其中D是由两条抛物线y=x^(1/2),y=x^2所围成的区域

原式=∫√ydy∫xdx=(1/2)∫√y(y-y^4)dy=(1/2)∫[y^(3/2)-y^(9/2)]dy=(1/2)[(2/5)y^(5/2)-(2/11)y^(11/2)]│=(1/2)(2

∮L(2xy-x^2)dx+(x+y^2)dy,其中L是由抛物线y=x^2和x=y^2所围成的区域的正向边界曲线

令P=2xy,Q=x+y².则αP/αy=2x,αQ/αx=1根据格林公式,得∮(2xy-x²)dx+(x+y²)dy=∫∫(1-2x)dxdy(S是L所围成区域)=∫d

计算∫∫siny/ydσ,其中D是由抛物线y²=x与直线y=x所围成的区域

解抛物线y²=x与直线y=x的交点得(0,0),(1,1)∫∫siny/ydσ(注意先积x,后积y)=∫[0,1]siny/ydy∫[y^2,y]dx=∫[0,1]siny/y(y-y^2)

求L=∫(x^2+2xy)dx-(x^2+y^2siny)dy,其中L是抛物线y=x^2从点A(-1,1)到点B(1,1

补线段L1:y=1,x:1→-1,这样L+L1为封闭曲线,所围区域是D∮(L+L1)(x²+2xy)dx-(x²+y²siny)dy格林公式=∫∫(2x+2x)dxdy积

数学抛物线题急!写出抛物线y=-3/4x*2+3/2x+9/4的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax*

y=-3/4(x²-2x)+9/4=-3/4(x²-2x+1-1)+9/4=-3/4(x²-2x+1)+3/4+9/4=-3/4(x-1)²+3所以对称轴x=1

已知抛物线C:y^2=4x,和直线l:4x-3y+6=0

l1是4x-3y+a=0则x=(3y-a)/4所以y²=4x=3y-ay²-3y+a=0y1+y2=3y1y2=ax=(3y-a)/4所以x1x2=(3y1-a)(3y2-a)/1

由抛物线y=x^2、直线x=1和x轴围成的平面图形的面积是

--啊?这是高二的吗?孩子啊~姐姐我高三那.这要用高2所学的“积分”来做的.我先告诉你方法吧.你先把图画出来.是不是看到一个三角的“月牙”而在X上的两个三角点分别为0和1这样就要使用积分求解面积了∫(

抛物线y=1/3(x-2)^2的图像可由抛物线y=1/3x^2 顶点坐标是____,对称轴是_____

你说的是不是图像的移动还有顶点对称轴问题,好像没写全啊,左右移动就是X的加减,上下九是Y的加减

计算∫Lxydx+(y-x)dy,其中L是抛物线y=x2上从点(0,0)到点(1,1)的一段弧

再问:😭再问:老师,把dy化成dx,在dy的式子后面乘以x2的导数是什么意思啊再答:dy=y'dx再问:谢谢老师😂再问:等等,那不是应该除以一个y',才能变成dx吗再答

曲线积分问题(2xy-x^2)dx+(x+y)^2dy对于L的曲线积分,其中L是关于抛物线y=x^2和y^2=x所围成的

根据你的要求,下面补充用格林公式来进行计算的大概步骤2xy-x^2的关于y的偏导数是2x(x+y)^2的关于x的偏导数是2(x+y)显然y=x^2与y^2=x围成了一个闭区域,且属于x型区域D则根据格