关于x的方程x^2 (m-2)x (m-3)=0的两根的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:00:32
当m的取值满足什么条件时,关于x的方程[3/x]+[6/x-1]=x+m/x(x-1)不会产生增根两边乘x(x-1)3(x-1)+6x=x+m增根即公分母为0x(x-1)=0x=0,x=1x=0代入3
x/(x-2)+(x-2)/x+(2x+m)/[x(x-2)]=0只有一个实数根,求m值.方程两边同时乘以x(x-2),去分母得x^2+(x-2)^2+2x+m=0化简得:2x^2-2x+4+m=0由
x²+2x+m=0(x+1)²=(1-m)=(m-1)i²(其中,i²=-1)x+1=±(√(m-1))ix=±(√(m-1))i-1又因为|α|+|β|=4,
2x/(x+1)-(m+1)/(x²+x)=(x+1)/x化简原方程的得x²-2x-(m+2)=0增根x=-1或x=0当x=-1时,m=1x=0时,m=-2
m/(x^2-x-2)=x/(x+1)-(x-1)/(x-2)m/(x-2)(x+1)=[x(x-2)-(x-1)(x+1)]/(x-2)(x+1)m=x(x-2)-(x-1)(x+1)=x^2-2x
方程两边同时乘以x²+x得:2x²-m=(x+1)²2x²-m=x²+2x+1x²-2x-1-m=0①因为原方程有增根,所以方程①的解中必有
(X-3)/(X+2)+m/(X²-4)=X/(X-2)(X-2)²+m=X(X+2)去分母6X-4-m=0化简当原方程有增根X=2或-2代入,得m=8或-16再问:是(x-2/x
两边乘(x+1)(x-2)m=x(x-1)-(x-1)(x+1)x²-x-x²+1=mx=1-m1分母不等于0所以x+1≠0x=1-m≠-1m≠2所以m>1且m≠2
原题:当m为何值时,关于X的方程M/X的平方-x-2=x/x+1-x-1/x-2的解是负数?两边乘(x+1)(x-2)m=x(x-2)-(x+1)(x-1)=x²-2x-x²+1x
方程2/[x-2]+[x+m]/[2-x]=2有增根2-(x+m)=2(x-2)2-x-m=2x-4x=(6-m)/3当X=2时有增根,则有2=(6-m)/3m=0
x^3-(2m+1)x^2+(3m+2)x-m-2=(x^3-x^2)-(2mx^2-2mx)+[(m+2)x-(m+2)]=x^2(x-1)-2mx(x-1)+(m+2)(x-1)=(x-1)(x^
这里不仅要考虑到分母有意义问题,还要注意到方程的有无解问题.由于1为增根,则将方程两边同时乘以X-1,得2m(X-1)+X+m=0,将X=1带入解得m的值为-1,下面考虑增根不是1的情况,即分母本身是
两边乘(x+1)(x-2)m=x(x-2)-(x+1)(x-1)=x²-2x-x²+1x=(1-m)/21且m≠3
方程化为x^2+(2m+1)x+m^2-2=0.(1)方程有两个相等的实根,则判别式为0,即(2m+1)^2-4(m^2-2)=0,解得m=-9/4,此时方程化为x^2-7/2*x+49/16=0,分
通分,消去分母X-2,用X=2带入的X=-1
x²-3x=m²-m-2x²-3x+9/4=m²-m+1/4(x-3/2)²=(m-1/2)²得x-3/2=m-1/2x=m+1或x-3/2
方程判别式△=[-2(m+1)]²-4·4·m=4m²-8m+4=4(m-1)²恒≥0,方程恒有实根.设两根分别为x1,x2,由韦达定理得x1+x2=2(m+1)/4=(
|x-2|+|x-3|=m当x≤2时,x-2≤0,x-3<0,则原式可化为:-x+2-x+3=m,x=(5-m)/2当2<x<3时,x-2>0,x-3<0,则原式可化为:x-2-x+3=m,m=1当x
x/(x-3)=2-m/(3-x)等式两边同时去分母,可得:x=2x-6+m所以x=6-m又该方程有一个正数解所以x=6-m>0,m