全体对称矩阵的基

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:04:07
全体对称矩阵的基
对称正定矩阵的特征值问题

前面两个问题是肯定的,后面题目问的是不是有问题,正定矩阵的特征向量?

对称变换在标准正交基下的矩阵是是对称矩阵?

晕,动一下手,化一下就知道了.

全体3阶实对称阵在矩阵的加法和数乘下构成的线性空间的维数为?为什么答案是6?

表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的

实数域上全体n阶对称矩阵组成的集合按合同分类 共有多少类?

共有n(n+1)/2类!因为实数域上全体n阶对称矩阵组成的集合构成一个n(n+1)/2的线性空间,按照同构的原理,共有n(n+1)/2类!

特征向量相互正交的矩阵一定是对称矩阵吗?一定是实对称矩阵吗?

不是的.再问:�����أ������Ҹ�������〜������ô��Ӧ�ã�再答:A=(1/3)*12-22-2-1212A�������,�����ǶԳƾ���

怎样证对称变换在标准正交基下的矩阵是实对称矩阵?可以证是对称矩阵,“实”该怎么证呢?

实的要求对应的是欧式空间,所以你的定理叙述有问题.如果是复数域上的酉空间,则对称变换在标准正交基下的矩阵为埃尔米特矩阵

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

对称正定矩阵的特征值问题3

3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?

对称矩阵,正定矩阵,共轭矩阵的判定条件是什么?

对称矩阵的根据定义判定.A'=A正定矩阵的判定方法有多种,常用的有:1.各介顺序主子式均大于零2.所有的秩都大于0.共轭矩阵的判定根据定义.已经很详细了~建议你到网络上去找一找课件看看.

对称正定矩阵的特征值问题2

可能不可逆的,对称矩阵又很多的,比如就第一行第一列元素为1,其他元素都为0的三阶方阵,显然是不可逆的

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

设一个对称矩阵有可逆矩阵,证明它的逆矩阵也是对称矩阵

证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)

线性代数,对称矩阵的证明题

第一问:因为A是实对称矩阵,所以存在正交矩阵PP'AP=∧∧是A的特征值构成的对角阵A=P∧P'A^3=P∧^3P'=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问

全体n阶实对称矩阵,按其合同规范形分类,共可分几类?

设正惯性系数是p,负惯性系数是q,可以先列举一下,当p=0,q可以从0取到n,这样就有n+1种情况当p=1,q可以从0取到n-1,这样就有n种情况.当p=n,q只能取0,是1种情况所以1+2+3+.+

举个对称正定矩阵的例子

最简单的例子:单位矩阵E=100010001单位矩阵就是对称正定矩阵.证明也很简单,对于任一个非零向量X,都有X'EX=X'X=|X|^2>0,只有当X=0向量时,X'EX才等于0,所以是正定矩阵.如

对称变换 在一组标准正交基下的矩阵是对称矩阵

证明在某组标准正交基下的矩阵为对称阵就相当于证明了在任意一组标准正交基下的矩阵为对称阵了.设T为这个对称变换,α1α2α3...αn,β1β2β3...βn分表为两组标准正交基,α到β的过渡阵为Q,标

实数域上的2x1的全体矩阵其实就是复数的全体

应该是(1x2)可以有两种解释:一是从数系理论理解,过于专业,我就不说了.二是简易的理因为复平面是二维的做如下对应关系(a,b)->a+bi其中加减和数乘运算同一般的向量运算,约定乘法如下(a,b)*

对称正定矩阵的特征值问题4

对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩