假设总体分部为N(12,2的平方),今从中抽取样本X1,X2,X3,X4,X5,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:14:48
假设总体分部为N(12,2的平方),今从中抽取样本X1,X2,X3,X4,X5,
总体X具有均值μ,方差σ^2.从总体中取得容量为n的样本,Xˉ为样本均值,S^2为样本方差

对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就

设总体X~N(μ,σ^2),X1,X2为来自总体X的样本,则(X1,X2)的联合概率密度为f(x1,x2)=______

就是两个正态概率密度乘积经济数学团队为你解答,有不清楚请追问.请及时评价.

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

在总体N(12,4)中随机抽一容量为5的样本X1,X2,X3,X4,X5.

1、样本均值服从N(12,0.8)P(|样本均值-12|>1)=P(|样本均值-12|/根号0.8>根号5/2)=2F(1.118)-1=0.76982、P{max{X1,X2,X3,X4,X5}>1

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,平均

这10个数的中位数为a+b2=10.5.这10个数的平均数为10.要使总体方差最小,即(a-10)2+(b-10)2最小.又∵(a-10)2+(b-10)2=(21-b-10)2+(b-10)2=(1

概率论与数理统计题.从正态总体N(4,5^2)中抽取容量为n的样本

样本均值X0~N(4,25/n)那么√n(X0-4)/5~N(0,1)P(2=24.01所以n至少为25再问:帮我再看看这个随机变量X服从均值为3,方差为σ^2的正态分布,且P{3

为何样本方差和总体方差的算法不一样,总体方差的自由度为总体个数n,而样本方差的自由度则是抽取的样本个

简单地可以这样理解,样本有n个,但是你求方差时用到样本均值x0=1/nΣxi,这个实际上是这n个样本的线性组合,所以算样本离差(注意是离差)时Σ(xi-x0)^2.均值会使得这n个独立变量消去了一个自

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

概率论与数理统计假设总体分布为N(12,2*2),今从中抽取样本X1,X2,……X5.问样本的最小值小于10的概率?57

Y=MIN(X1,X2,……X5)的分布函数为:F(y)=p(Yy)=1-P(X1>y,X2>y,……X5>y)=1-P(X1>y)P(X2>y).P(X5>y)所以样本的最小值小于10的概率=F(1

假设总体分部为N(12,2的平方),今从中抽取样本X1,X2,X3,X4,X5,

把10和15分别代入Φ[(x-12)/2],查正态分布表Φ(-1)和Φ(1.5),假设分别为P1和P2(我这里没表).则一个数小于10的概率是P1;一个数大于15的概率是1-P2(1)假设5个数都大于

概率论:设总体X~N(u,σ^2),抽取容量为20的样本x1,x2…,x20.求:

再问:啊在书上看到了概念不好意思==三克油么么哒ww

设分别从独立总体N (μ1,σ2)和N (μ2,σ2)中抽取容量为m,n的两个样本,

S12=σ2的平方S22=σ2的平方所以Z=(a+b)σ2的平方=σ2的平方=S12=S22所以命题成立不知道D(Z)的意思

在总体N(3.4,36)中抽取容量为n的样本~

x~(3.4,(6/√n)^2),Φ((5.4-3.4)/(6/√n))-Φ((1.4-3.4)/(6/√n))>=0.95,2Φ(√n/3)-1>=0.95,Φ(√n/3)>=0.975,√n/3>