假设A是m×n阶矩阵,若对任意n维向量x,都有Ax=0,则A=0.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:13:53
因A'A对称,可以对角化为Pdiag(a1,...,an)P',P是正交阵取a>|ai|,i=1,2,...,n则aIn+A'A=Pdiag(a+a1,...,a+an)P',特征值都是正数,从而正定
条件表明矩阵A及(A,b)的秩都等于m(因为它们仅有m行),m
设ε1ε2ε3.εn是n维基本向量组.即每个εi=(0,0,...,0,1,0,...,0)^T,1在第i个位置.由已知条件,Aεi=0.所以A(ε1,ε2,ε3,.,εn)=O.即有AEn=O.所以
经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
根据转置矩阵的性质(AB)'=B'A'以及(A')'=A有(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.同理(AA')'=(A')'A'=AA'所以AA'也是对称矩阵.
选(B)A满秩的时候(A)错A不满秩的时候(C)错(D)永远错
对的对的定理:两个矩阵乘积的不大于每一因子的秩,特别当有一个因子是可逆矩阵时,乘积的秩=另一个因子的秩.
因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.
因为(AA^T)^T=(A^T)^TA^T=AA^T所以AA^T是对称矩阵同理,因为(A^TA)^T=A^T(A^T)^T=A^TA所以A^TA是对称矩阵.性质:(AB)^T=B^TA^T还有什么问题
假设A=(α1,α2,…,αn),αi为A的列向量(i=1,2,…,n),取βi=(0,…,1,…,0)T(i=1,2,…,n),只有第i个分量为1,其余都为0,则Aβi=A0⋮1⋮0=αi=0,(i
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.
假设A不可逆,则:R(A)
知识点:1.A是对称矩阵的充分必要条件是A'=A(A'表示A的转置)2.(AB)'=B'A'3.(A')'=A因为(A'A)'=A'(A')'=A'A所以A'A是对称矩阵.因为(AA')'=(A')'
1.证明:(1)因为AB=0,所以B的列向量都是AX=0的解[看到AB=0就要联想到这个结论]而由已知r(A)=n,所以AX=0只有零解所以B的列向量都是零向量,故B-0.(2)由AB=A,所以A(B
证明:设A=(aij).取xi是第i个分量为1其余分量为0的m维行向量,i=1,2,…,m;取yj是第j个分量为1其余分量为0的n维列向量,j=1,2,…,n.则有xiAyj=aij,i=1,2,…,
因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么