依概率收敛于1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:56:47
用epsilon-delta语言证再问:这个方法用在数学分析里行,可是概率是测度,所以不能直接这样证明。有没有别的方法证呢?再答:就是epsilon-delta语言证,对任意epsilon>0,存在d
再问:设这个s有什么用啊故后面那个怎么推的??再答:S^2叫样本方差,是方差的无偏估计量。“故”后面就是把"故"前面求出来的东西全部代进去,然后对n取极限。就可以得到答案了。
依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ
依概率1收敛,就是说当n趋向于无穷,Xn取a的概率接近于1.是另一种Xn无限接近与a的方式.大数定理和中心极限定理是后面估计和假设实验的理论依据.从后面的理论你可以更好的体会这个依概率收敛.我如果取样
就是说级数的参数在变,所以级数的和在变,怎么变化呢?按照f(x)方式在变.就说收敛于函数f(x).
用定义,考虑退化分布,很容易证.
根据Kolmogorov的ThreeSeriesTheorem(http://en.wikipedia.org/wiki/Kolmogorov%27s_three-series_theorem),Tn
这里得假设两个正态总体是独立.显然X1Y1,X2Y2,...,XnYn是独立同分布的.(服从什么分布我们不管,大数定律中也没有要求)而E(XiYi)=E(Xi)E(Yi)=0,于是由大数定律可得(1/
n趋于无穷大时,可以把第二个e^n看作是0测度点,于是Zn就是0,依概率收敛到0.
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
求单根时,Newton迭代至少二阶收敛;而求重根时,Newton迭代只有一阶收敛.——抄于欧阳杰版数值分析P40页
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,
随机变量本质上是一个实值函数,所以它的收敛应该和函数列的收敛去比较.
由于{fk(x)}在E上依测度收敛于f(x),则任取e>0,limm({x属于E:|fk(x)-f(x)|>e})=0k趋于无穷大又由于||fk(x)|-|f(x)||e时必有|fk(x)-f(x)|
因为{xn}收敛于a,所以任给ε>0,存在正整数N,当n>N时,|xn-a|
因为Xn收敛于a,即当n—>无穷大时,|Xn-a|-->0或lim|Xn-a|=0由于lim|Xn-a|=lim||Xn|-|a||=0所以|Xn|收敛于|a|反之不成立,1楼已经举例说明了.用逻辑的
依概率收敛是对于随机变量来说的.一个随机变量序列(Xn)n>=1依概率收敛到某一个随机变量X,指的是Xn和X之间存在一定差距的可能性将会随着n的增大而趋向于零.而函数收敛是对于函数来说的.是对于任意的
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0