使用RSA进行加密.(1)若P=7. q=11,试列出5个有效的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:22:05
非对称加密之所以有效就在于数学上目前还没有解决那么难的问题.如果原理简单,数学上都解决了,那么就很容易破解.就谈不上什么保密了.
你所说的:n=20d=7公钥e=3私钥对M=3进行加密M'=M^d%n(M的d次方,然后除以n取余数)M'=3^7%20=2187%20=7加密后等於7对M'=7进行解密M=M'^e%n=7^3%20
如果p和q还可以分解则pq乘积的分解形式就不唯一了,这样加密后就不一定能解密了再问:我的意思是p和q为什么要是素数,随便两个偶数不行吗再答:假设pq=abcd如果你用ac*bd来加密而我用abc*d来
n=p*q=33phi=(p-1)(q-1)=20e=7e*d=1(modphi)d=17公私密钥对:(n,d)(n,e)编码过程是,若资料为a,将其看成是一个大整数,假设a如果a>=n的话,就将a表
首先说一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e与d的乘积对(p-1)(q-1)取余结果是1,题目给出e=7,(p-1)(q-1)可以求得是60,即
#include#include#includetypedefintElemtype;Elemtypep,q,e;Elemtypefn;Elemtypem,c;intflag=0;typedefvoi
n=pq=33\phi(n)=(p-1)(q-1)=2*10=20ed=1mod(\phi(n))用扩展欧几里德可求出d=3(直接看出来也可以.)加密密文C=(M^e)%n=(5^7)%20=5解密明
加密:C=M的E次方modNmod表示模运算3的7次方模20等于7所以加密后密文就是7解密:M=C的D次方modN7的3次方模20等于3所以解密密后就得到明文就是原来的3
加密时用公钥d,解密时用私钥e公式都一样要加密或解密的数字做e次方或d次方,得到的数字再和n进行模运算,模运算就是求余数拿你给的数据来算的话就是3的7次方等于2187,2187除以20等于109,余数
n=P*q=10n的欧拉值=(p-1)*(q-1)=4e满足1
你用的语言是哪个?我当时是用C语言写的代码,实现最大RSA-2048.我把思想给你说一下吧.如果我们要定义一个很小的e、d、n、m,那么直接unsignedlongint就可以了.但是这样定义的数据的
百度百科,RSA.再问:已经看了,但还是不懂,里面没有对它的明确定义
如例:自己算p=34q=59这样n=p*q=2006t=(p-1)*(q-1)=1914取e=13,满足eperl-e"foreach$i(1..9999){print($i),lastif$i*13
计算n=p*q=33求密文:密文c=m^emodn=21952mod7求明文:明文m=c^dmodn=823543mod33=28在使用时,首先将明文数字化,然后分组,每组数据k(0=
不会啊.再问:嗯,我会了~。。。。分就给你吧~
用a表示加密前的信息,b表示加密后的信息,c表示用另一对密钥解密后所得的信息,那么:对明文加密后得b≡a^emod(p*q)然后再用另一对密钥解密b得c≡a^d≡(a^e)^d=a^(e*d)cmod
mod是求余运算符.如果x与y的积除以z所得的余数为1,即xy=1(modz),则称x和y对于模数z来说互为逆元,这种互为逆元的关系用符号表示为:x=y的-1次方(modz)x的-1次方=y(modz
//下面程序由520huiqin编写,已在VC++6.0下编译通过#include#include#includetypedefintElemtype;Elemtypep,q,e;Elemtypefn
就是解同余方程3533d≡1(mod11200)啰!用辗转相除法就可以了.11200x≡-1(mod3533)←→601x≡-1(mod3533)3533y≡1(mod601)←→-73y≡1(mod
加密区在构件的两端,所以要乘以2