(x^3 sinx^2) (x^4 2x^2 1) dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:05:30
(x^3 sinx^2) (x^4 2x^2 1) dx
f(x)=sin[(sinx)^2],g(x)=3x^2+4x^3,求当x趋近于0时,f(x)/g(x)的极限

x->0,f(x)=sin(sin²x)x²,g(x)3x²原式=1/3再问:g(x)为何趋近于3x²?再答:是利用等价无穷小,lim(x->0)g(x)/3x

sinx+cosx/sinx-cosx=2 求sinx/cos^3x +cosx/sin^3x

由(sinx+cosx)^2=1/25得2sinxcosx=-24/25,(sinx-cosx)^2=48/25得sinx-cosx=-4√3/5,故sin^3x-cos^3x=(sinx-cosx)

∫(-5->5)|x|(sinx)^3 dx/x^4+2x^2+1=

|x|(sinx)^3/x^4+2x^2+1=|x|(sinx)^3/(x^2+1)^2这明显是个R上的奇函数所以在对称区间(-5,5)上的积分为0原式=0再问:���Ҫ����ػ��ȥ����ֻ�ȥ

求导 (1)y=根号2x+sinx (2)y=sinx*Inx (3)y=x/x^2+1 (4)y =In(sinx)

(1)y=根号2x+sinxy'=1/(2√2x)+cosx(2)y'=cosxlnx+sinx/x(3)y'=(x^2+1-2x^2)/(x^2+1)^2=(1-x^2)/(x^2+1)^2(4)y

∫ (-3----3)x^5(sinx)^2/4+x^2+x^4 dx

被积函数f(x)=x^5(sinx)^2/(4+x^2+x^4)因为f(-x)=(-x)^5[sin(-x)]^2/[4+(-x)^2+(-x)^4]=-x^5(sinx)^2/(4+x^2+x^4)

设f(x)满足f(-sinx)+3f(sinx)=4sinx乘以cosx,(绝对值x

f(-sinx)+3f(sinx)=4sinxcosx即f(sin(-x))+3f(sinx)=4sinxcosx用x代替-xf(sinx)+3f(sin(-x))=4sin(-x)cos(-x)两式

根号下(sinx-(sinx)^3 x)dx

根号下(sinx-(sinx)^3)dx=根号下(sinx[1-(sinx)^2])dx=根号下(sinx*cos^2x)dx=根号下(sinx)*cosxdx=根号下(sinx)*dsinx=2/3

4sinx+4sin(2派/3-x)

原式=4sinx+4sin【π-(2π/3-x)】=4sinx+4sin(x+π/3)(拆开)=4sinx+4(sinxcosπ/3+cosxsinπ/3)=4sinx+4(1/2sinx+√3/2c

已知f(x)=2√3sinx+sin2x/sinx

1、f(x)=2√3sinx+2cosx=4sin(x+π/6)f(x)的最大值为4,此时x∈{x|x=π/3+2kπ,k∈Z}.2、由f(x)=2bc-bc=bc所以bc

lim x趋向0 x^2-sinx/x+sinx

你好!limx趋向0时x^2-sinx/x+sinx=-1因为:limx趋向0时x^2=0,sinx/x+sinx=1,sinx=0.x^2-sinx/x+sinx=0-1+0=-1正解!希望你能满意

设f(x)满足f(-sinx)+3f(sinx)=4sinx*cosx(x的绝对值小于等于π/2)

设x=sinxf(-x)+3f(x)=4*x*√(1-x^2).①设x--sinxf(x)+3f(-x)=4*(-x)*√(1-x^2).②①②分别相加相减得到③④4f(x)+4f(-x)=0.③2f

求导 y=(-2x+3)sinx

y=-2xsinx+3sinxy'=-2sinx-2xcosx+3cosx

(x^x-(sinx)^x)/x^3极限

能看懂的话在继续研究吧,太复杂了.

化简sin^4x/sinx-cosx - (sinx+cosx)cos^2x/tan^2x-1

sin⁴x/(sinx-cosx)-(sinx+cosx)cos²x/(tan²x-1)=sin⁴x/(sinx-cosx)-(sinx+cosx)cos&

求极限:lim(x^2*sinx-2x^3)/(x^3+2x^4) 当x趋向于0

lim(x→0)(x^2*sinx-2x^3)/(x^3+2x^4)=lim(x→0)(sinx-2x)/(x+2x^2)(0/0)=lim(x→0)(cosx-2)/(1+2x)=-1

定积分(-5到5)x^2sinx^3/x^4+2x^2+1 dx

若是I=∫[x^2(sinx)^3/(x^4+2x^2+1)]dx,则I=0.若是I=∫{[x^2(sinx)^3/x^4]+2x^2+1}dx,则I=0+∫(2x^2+1)dx=2∫(2x^2+1)

lim x-sinx/x+sinx

(x→0)lim(x-sinx)/(x+sinx).罗比达法则=(x→0)lim(1-cosx)/(1+cosx)=0/2=0

求下列极限,lim(x+2sinx)/(x+3sinx),x→0

上下除以x=(1+2sinx/x)/(1+3sinx/x)sinx/x极限是1所以原来极限=(1+2)/(1+3)=3/4