二次型x^2-xy y^2的矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:40:18
二次型x^2-xy y^2的矩阵
化简(x-yx2-2xy+y2-xy+y2x2-y2)•xyy-1= ___ .

原式=[x-y(x-y)2-y(x+y)(x+y)(x-y)]•xyy-1=(1x-y-yx-y)•xyy-1=1-yx-y•xyy-1=-xyx-y.故答案是:-xyx-y.

这两道线性代数,关于二次型矩阵的

17再答:再答:再答:再答:16先发前两问,纸没地了再答:再答:我也是大一刚学,以后可以互相帮助~~再问:万分感谢再问:这个是怎么变得再问:

二次型的系数A矩阵秩等于2为什么行列式A的值等于0

那A的阶至少是3哈再问:可以解释再清楚一点吗?再答:因为n阶方阵A的秩小于n的充分必要条件是|A|=0.所以若|A|=0,则r(A)=2

求二次型 ,(1)写出二次型的矩阵A; (2)求一个正交变换化二次型为标准型;

 (2)求A的特征值和特征向量特征向量.把特征向量正交化单位化,然后构成正交矩阵,极为所求.这个就自己动手吧.(3)看特特征值的符号判断是不是正定二次型.再问:

英语翻译要翻译的词汇如下:\x1e实对称矩阵,二次型,正定矩阵,半正定矩阵,负定矩阵,半负定矩阵,不定矩阵,二次曲线,二

保证正确无误-----------Realsymmetricmatrix,Quadraticform,Positivedefinitematrix,Positivesemidefinitematrix

一道数学运算题.根号X的三次+X平方Y+1/4XY+根号1/4X的三次-X平方Y+XYY(意思是Y的平方.).其中X=2

题目是√x^3+X^2y+1/4xy+√(1/4x^3)-X^2y+xy^2如果是:√x^3+X^2y+1/4xy+√(1/4x^3)-X^2y+xy^2=(3/2)√x^3+xy/4+xy^2=(3

已知3x2+xy-2y2=0,求(x+yx-y+4xyy

原式=[(x+y)2(x-y)(x+y)+-4xy(x-y)(x+y)]×(x+3y)(x-3y)(x+3y)(x-y)=x-3yx+y,由已知得(3x-2y)(x+y)=0,因为x+y≠0,所以3x

线性代数问题:B是N阶可逆矩阵,(B的逆矩阵)的2次方等于(B的二次方)的逆矩阵?

只要证明(B的逆矩阵)的2次方乘B的二次方=E(单位阵)即可这是显然的:(B的逆矩阵)的2次方乘B的二次方=(B的逆矩阵×B的逆矩阵)×(B×B)=B的逆矩阵×(B的逆矩阵×B)×B=B的逆矩阵×E(

验证给定函数是其对应微分方程的解:xyy"+x(y')^2-yy'=0,x^2/C1+y^2/C2=1

x^2/C1+y^2/C2=1两边对x求导:2x/c1+2yy'/c2=0x/c1=-yy'/c2(yy')/x=-c2/c1两边对x求导:[(y'^2+yy'')x-yy']/x^2=0xyy''+

XYY的男性产生的精子有X,Y,YY,XY四种类型,比例为1:2:1:2

产生4种配子xyxyyyx有一种y有两种xy1y2xy1xy2y1y2产生的配子如上y1、y2是一个意思所以分为一组xyxyyy=1221

已知方程组x+2y=5a和2x-y=5的解满足xyy,化简a+2的绝对值减去a-1/2的绝对值

y=2x-5所以x+2y=x+4x-10=5a5x=5a+10x=a+2y=2x-5=2a-1xyy所以x>0>y所以a+2>00>2a-1,a-1/2

据报道,有2%~4%的精神病患者的性染色体组成为XYY.下列关于XYY综合征的叙述,正确的是( )

B是错误的,C是正确的.减数第二次分裂时,由于男性次级精母细胞中的Y染色体着丝点断列后形成的两条染色体没有分到两个子细胞中去,从而形成一个含有两个Y染色体的异常细胞,含YY染色体的异常细胞与含X染色体

为什么二次型矩阵的秩为2,行列式就等于0?

只有满秩的行列式不为0,其他都是0

线性代数,二次型的矩阵

额,你没怎么看书吧.行对应(X1,X2,X3),列也是一样2不是没有,是变为两个1了,即:2X1X2=X1*X2+X2*X1也就对应第一列二行和第二列一行.

已知二次型f=x1^2+x3^2+2x1x2-2x2x3 (1)写出此二次型对应的矩阵A

(1)A=11010-10-11(2)|A-λE|=1-λ101-λ-10-11-λc1+c31-λ100-λ-11-λ-11-λr3-r11-λ100-λ-10-21-λ=(1-λ)[-λ(1-λ)

既然二次型的矩阵一定是对称矩阵,那么对称矩阵一定是二次型矩阵吗?

是的,任意一个n阶对称矩阵A都可以对应一个二次型X'Ax,X是n维列向量.展开就是a11x1^2+2a12x1x2+2a13x1x3+.+annxn^2

设二次型f(x1,x2,x3,x4)=x'Ax的正惯性指数为p=1,又矩阵A满足A^2-2A=3E,则此二次型的规范形为

因为A^2-2A=3E所以A的特征值a满足(a-3)(a+1)=0所以A的特征值只能是3或-1.又由于f的正惯性指数p=1所以A的特征值为3,-1,-1,-1所以规范型为(A).PS.事实上,由正惯性

可对角化矩阵的问题已知矩阵2 0 1A=0 3 01 0 2是相关矩阵的二次型a) 说明这个矩阵是否可对角化b) 根据其

对称矩阵必可对角化.矩阵的特征多项式为(x-3)^2(x-1),特征值为3,3,1,三个特征值均大于0,为正定二次型

0=xy^2 求导等于y^2+2xyy'y'是怎么来的?

因为y是由x表示的函数,由于没有具体的表达式,所以求导的时候用y'表示已经对y求导了(xy^2)'=y^2+x(y^2)'=y^2+2xy(y)'=y^2+2xyy'