为什么矩阵a b相乘为零两矩阵的秩之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:29:16
为什么矩阵a b相乘为零两矩阵的秩之和
老师您好,为什么行列式为零的矩阵的伴随矩阵必须是零矩阵?我发现有非零的矩阵也满足伴随矩阵的公式啊?

行列式为0的矩阵的伴随矩阵不一定是零矩阵,只有矩阵的秩小于n-1再问:矩阵的秩小于N-1是伴随矩阵就是零矩阵了么?再答:嗯,这个很简单理解的,因为矩阵秩小于n-1,那么它所有的n-1阶行列式都为0,而

如果一个矩阵和它的转置相乘为单位矩阵,这个矩阵是什么矩阵?

正交矩阵.当然,仅仅是指方阵而言.正交矩阵的特点:行列式的绝对值是1,行和列都是与矩阵阶数相同维数的向量空间的标准正交基,作为线性变换不改变长度和内积,等等.

两矩阵AB乘积为零矩阵且已知A不是零矩阵,那么可得出B就是零矩阵吗?

不能.矩阵的乘法有零因子,不满足消去律怎么会利用上述结论?

矩阵与其转置矩阵的乘积为零矩阵 证明原矩阵为零矩阵

直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵吗?

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A

两个矩阵相乘之后的新矩阵为什么小于等于这两个矩阵的最小值?即R(AB)

有很多方法说明这个问题,这里告诉你其中一个先知道三个事实第一初等变换不改变矩阵的秩第二初等行(列)变换,相当于左(右)乘一个可逆阵.第三一个秩为r,可以只通过行(列)变换变成主对角线上只有r个1,其它

两个矩阵相乘零矩阵,秩的关系

两种证明方法.第一种是用分块矩阵乘法来证明.(不太好书写,可以见线性代数习题册答案集);第二种是线性方程组的解的关系来证明.因为AB=0,所以B的每一列都是线性方程组AX=0的解.而根据线性方程组理论

一个矩阵和它的转置相乘后的矩阵行列式为什么为0?

明显不对单位阵和他的转置相乘还是单位阵怎么可能行列式为零?

两个非零矩阵相乘等于0的条件是什么?

前一个矩阵的行空间与后一矩阵的列空间正交.

两个非零矩阵相乘为什么会等于零呢?

这就是矩阵的乘法的定义啊~两个矩阵相乘:1,1,11,12,2,2*2,23,3,33,3新的矩阵的第a行第b列的元素等于第一个矩阵的第a行的元素分别于第2个矩阵的第b列的个个元素乘再相加.如这题中新

如果两个矩阵A和B相乘为零矩阵,那么A和B的行列式值一定都为0吗?为什么?

不一定,因为矩阵的乘法是每一行的数另一个行列式的数相乘,然后形成一个新的行列式.具体看类似的参考书,很简单

为什么 若两n阶方阵相乘为零矩阵,则两方阵各自的秩相加 小于n

AB=0则B的列向量都是齐次线性方程组Ax=0的解所以r(B)

一个矩阵和它的转置相乘是0,则矩阵是0矩阵.为什么?

前提是实矩阵证明很容易,看看AA^T的对角元是什么

两个矩阵A,B相乘等于零矩阵,是否可以推出A,B的行列式至少有一个为零!

不能,两个非零矩阵A,B相乘可以等于零矩阵,例如A=1-1-11B=2222则AB=0,但A,B都不为0.再问:我说的是对应的行列式为零再答:一定能推出。因为AB=0所以|AB|=|A||B|=0,行