(sinx)3/1 cosxdx的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:45:43
充分应用公式:∫udv=u*v-∫vdu;∫du=∫u'dx1.:∫x^2(sinx)^2dx=∫x^2*(1-cos2x)/2dx=∫x^2/2dx-1/4*∫x^2*cos2xd(2x)对于∫x^
tanx=sinx/cosx=2sinx=2cosx1(2cosx-3sinx)/(sinx+cosx)=(sinx-3sinx)/(sinx+sinx/2)=-2/(3/2)=-4/32sinx+c
基本上4条都用万能公式代换首先令u=tan(x/2),那么du=(1/2)sec²(x/2)dxdu=2du/(1+u²),sinx=2u/(1+u²),cosx=(1-
∫f(sinx)cosxdx=∫f(sinx)dsinx因为∫f(x)dx=1/(1+x^2)+c所以∫f(sinx)dsinx=1/[1+(sinx)^2]+c那么∫f(sinx)cosxdx=1/
∫sinx+cosx/(sinx-cosx)^1/3dx=∫(sinx-cosx)^(-1/3)d(sinx-cosx)=1/(2/3)*(sinx-cosx)^(2/3)+C=3(sinx-cosx
首先先分离常数:y=(3sinx+6-7)/(sinx+2)=3-(7)/(sinx+2)对于sinx属于[-1,1]那么sinx+2属于[1.3]那么(7)/(sinx+2)属于[7/3,7]对于整
原式=∫(-2→0)(3x-1)dx+∫(0→2)(2x-1)dx+1/2∫(0→π/2)sin2xd2x=(3/2x²-x)|(-2→0)+(x²-x)|(0→2)-1/2cos
原式=∫(sinx-cosx)^1/3d(sinx-cosx)
(sinx)^3的那种:=x-∫(sinx)^3dx+C=x+∫(sinx)^2dcosx+C=x+∫[1-(cosx)^2]dcosx+C=x+cosx-1/3(cosx)^3+C
即∫f(x)=sinx/x+C∫f(sinx+1)cosxdx=∫f(sinx+1)d(sinx+1)=sin(sinx+1)/(sinx+1)+C
∫sin2/3xdx=3/2∫sin2x/3d2x/3=-3/2×cos(2x/3)+C∫e^sinxcosxdx=∫e^sinxdsinx=e^sinx+C∫1\x^2sin1\xdx=-∫sin(
解释:1、d代表的是微分(differentiation),dx代表的是x的无限小的增量;2、导数是dy/dx,我们教师近百年来,已经养成了一个全国性的通病:不喜欢写dy/dx,只喜欢写y',由于书写
没这么简单,可用万能公式支持就给个采纳,谢谢.
对原式两边平方[sin(X/2)]^2+[cos(x/2)]^2-2sin(X/2)cos(x/2)=1/91-2sin(X/2)cos(x/2)=1/9sinX=2sin(X/2)cos(x/2)=
用均值不等式:y=sinx+1/(2sinx)+3≥2√(sinx*1/(2sinx))+3=3+2√2当且仅当:sinx=1/(2sinx)时取得最小值3+2√2因此原函数的值域为:[3+2√2,+
y=(sinx-1)/(2sinx+3)=(sinx+3/2-5/2)/(2sinx+3)=1/2-5/(4sinx+6)因为-1=
已知公式:sinx*sinx+cosx*cosx=1(1);由原式知cosx=3sinx-1,两边平方得:cosx*cosx=9sinx*sinx-6sinx+1,代入(1)中,得10sinx*sin
因为3sinx-2cosx=0,所以sinx/2=cosx/3.令sinx=2k,cosx=3k,k≠0.(1)原式=(3k-2k)/(3k+2k)+(3k+2k)/(3k-2k)=(1/5)+5=2
方法1:因为y=xcosx是奇函数,所以结果为零.这是高等数学中定积分的一个性质.方法2:如下图这个题目求原函数的方法超出了新课标的要求
解法1.原式=-ln|1+cosx|+∫4sin^2(x/2)cos^2(x/2)/(2cos^(x/2)dx =-ln|1+cosx|+∫2sin^2(x/2)dx =-ln|1+cosx|+∫