中△abc中,ab=ac,以ab为直径的圆o交bc与m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:39:30
中△abc中,ab=ac,以ab为直径的圆o交bc与m
如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC-根号2,等边三角形ABD以AB为轴转动.

我个人理解你那句“AC=BC-根号2”应该是“AC=BC=根号2”,否则没法做.1、取AB中点E,连接CE、DE,可求得CE=1,DE=根号3因为AC=BC,所以△ABC为等腰三角形,所以CE⊥AB又

A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=√2.等边三角形ADB以AB为轴转动

(1)作AB中点N,连接DN,CN交AB于点N.由于三角形ADB为等边三角形,三角形ABC为等腰三角形,且N为AB中点∴由三角形性质知DN⊥AB,CN⊥AB,DN=√BD²+BN²

在△ABC中,AB=2,AC=2

本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠

如图,在△ABC中,AB=AC,∠C等于2∠A如图,在△ABC中,AB=AC,∠C等于2∠A,以AB为弦的圆O与BC切点

∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=

已知:如图,△ABC中,AB=AC,∠A=120度.

证明:(1)作图如下:(2)CM=2BM证明:连接AM,则BM=AM∵AB=AC,∠BAC=120°∴∠B=∠C=30°,∴∠MAB=∠B=30°,∠MAC=90°∴AM=12CM,故BM=12CM,

△ABC中,AB=AC=2,∠A=36°,则BC=

△ABC中,AB=AC=2,∠A=36°,所以∠B=72°,∠C=72°从B点作角B的平方线BD交AC于D,则∠DBC=36°=∠DBA=36°,∠CDB=72°=∠C所以BC=BD=AD,三角形AB

已知在△ABC中,AB=a+5,BC=8-a,AC=a

就是一个三角不等关系的运用1)存在,周长15.5当A=2.5时AB=7.5BC=5.5AC=2.5BC+AC=8大于AB=7.5所以存在2)同理也不存在当A=3时AB=8BC=5AC=3BC+AC=8

在△ABC中,BC=a,AC=b,AB=c,且满足a

a4+b4+12c4=a2c2+b2c2变形为:a4+b4+12c4-a2c2-b2c2=0,∴(a4-a2c2+14c4)+(b4-b2c2+14c2)=0,∴(a2−12c2) 2+(b

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

在△ABC中AB=15 AC=13

解题思路:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△AB

已知△ABC中,BC=a-1,AC=a,AB=a+1

(1)AB边是最长边,其理由是:∵AB-BC=(a+1)-(a-1)=2>0,AB-AC=(a+1)-a=1>0,∴AB>BC,AB>AC.∴AB边是最长边.(2)由BC+AC>AB,得(a-1)+a

△ABC中,AB=AC,

在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!

已知在△ABc中,角A=90。,AB=Ac,cD平分角ACB

解题思路:运用三角形全等解答。解题过程:见附件。最终答案:略

如图,△ABC中,∠A=60°,以BC为直径作⊙O分别交AB、AC于D、E,

(1)证明:连接BE,∵BC是⊙O的直径,∴∠BEC=90°,即∠AEB=90°,∵∠A=60°,∴∠ABE=30°,∴AB=2AE;(2)∵AE=2,∴AB=2AE=4,∴BE=AB2−AE2=23

图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )

选择:D阴影面积=整圆-S△ABC=16π-12√7再问:��˵D����˵C�������ĸ���再答:S��Բ��16�У�S��ABC=12��7��Ӱ���S��Բ-S��ABC=16��-1

如图.在△ABC中,AB=AC,

10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X

在△ABC中,AB=2,AC=6

如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:

已知△ABC中,∠C=90°,∠A=30°,AB=8cm,求以AC为边长的正方形的面积.

∵△ABC中,∠C=90°,∠A=30°,AB=8cm,∴AC=AB×cos30°=43cm,∴以AC为边长的正方形的面积是(43cm)2=48cm2.