三角形是园o的内接三角形,bc=根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:06:32
三角形是园o的内接三角形,bc=根号3
三角形是圆o的内接三角形

三角形的重心应该是圆的圆心

三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

已知三角形ABC是直径长为10厘米的圆O的内接等腰三角形,且底边BC=8厘米,求S三角形ABC

从a点向bc边做垂线,垂足为d,又因三角形ABC为等腰三角形,所以bd=cd,连接bo,在三角形bod中,bo=5,bd=4,所以od=3所以ad=5+3=8三角形abc面积=8*8/2=32

在圆O的内接三角形ABC中,AB=AC,D是圆O上一点,AD的延长线交BC的延长线于点P.

1、因为AB=AC,所以角ABC=角ACB角ABD=角ABC-角DBC角P=角ACB-角CAD又角DBC=角CAD所以角ABD=角P又角BAD=角PAB所以三角形ABD相似于三角形APB所以AB/AP

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD.若AC垂直BC,怎样求

延长BD至E,使DA=DE,连EA∵∠ACB=90,∴AB为直径,∠ADB=90.∴∠AED=∠EAD=45,又∠CAB=45,∴∠CAD=∠BAE,又∠ACD=∠ABD,∴△ACD∽△ABE,CD:

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

如图,三角形ABC是圆O的内接三角形,AD⊥BC于D,AB=8,AD=5,AC=6

连接AO交延长交圆O于E∵∠AEB、∠ACB所对应圆弧都为劣弧AB∴∠AEB=∠ACB∵直径AE∴∠ABE=90∵AD⊥BC∴∠ADC=∠ABE∴△ABE∽△ADC∴AE/AB=AC/AD∴AE/8=

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

1.已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O 内接正八边形的一边,那么AC是圆O的内

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边.2一个圆半径R=4,圆心距为3,

已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O内接正八边形的一边,那么

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-

三角形内接于圆O的直径,CD是三角形ABC中AB边上的高,求证:AC*BC=AE*CD

如果AE是直径,如图∠E=∠B,(同圆弧所对内角)AE是直径,则∠ACE=90°CD垂直BC,则∠CDB=90°∴△ACE∽CDB∴AC/CD=AE/BC∴AC*BC=AE*CD

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

O是三角形ABC内的点,2010BO=10AB+1999BC,(BO,AB,BC为向量)求三角形ABC与三角形AOC面积

BO\2009=10OA\2009+1999OC\2009BO\2009为BO所在直线交AC与D点,既OD所以面积之比为BO比OD为2010

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B