三角形内任一点到三点距离小于周长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:08:41
根据重心的性质:G为重心,则GA:GD=2:1.重心是中线的交点,所以AG与BC的交点是边的中点,即D是BC中点.因为O为外心,外心是垂直平分线的交点,而D是BC中点,所以OD⊥BC.H为垂心,所以&
证明:在三角形PAB中,PA+PB大于AB,同理得:PA+PC大于AC,PB+PC大于BC,三式相加,得:2(PA+PB+PC)大于AB+BC+AC,所以1/2(AB+BC+AC小于AP+BP+CP.
延长BA到F,使AF=AC∵AD为三角形ABC的角平分线∴∠BAD=∠CAD∵直线MN垂直AD于A∴∠FAE=90°-∠BAD=90°-∠CAD=∠CAE∵AF=ACAE为公共边∴△AFE≌△ACE∴
设HA,HB,HC是三棱锥三个侧面上的高,P为底面内任一点,P到三个侧面相应的距离分别为PA,PB,PC,则PA/HA+PB/HB+PC/HC=1
设ha,hb,hc,hd三棱锥A-BCD四个面上的高.P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为pa,pb,pc,pd我们可以得到结论:paha+pbhb+pchc+pdhd=1.VP-
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
延长BP交AC于D,AB+AC=AB+AD+DC大于BD+DC=BP+PD+DC大于BP+PC
相似.因为A`B`是△OAB的中位线,所以A`B`//AB,且A`B`=1/2AB,即A`B`/AB=1/2同理:A`C`/AC=1/2B`C`/BC=1/2所以A`B`/AB=A`C`/AC=B`C
设P是三角形ABC内任意一点,延长BP交AC于D.三角形两边之和大于第三边,在ABD中,AB+AD>BP+PD,在DPC中,PD+DC>PC,两式相加即得,AB+AC>PB+PC.
证明:设三角形内任意一点为P,过P点作BC边的平行线EF,分别交AB、AC于E、F.∵ΔABC为等边三角形,∴∠AFE=∠ABC=60°,又∵∠APE>∠AFE,∴∠APE>60°.在ΔAEP中,∵∠
证明:取AB、AP的中点分别D、K,结合已知条件,则有DK∥BP,且DK=1/2BP=OFFK∥CP,且FK=1/2CP=OD ∴DOFK为平行四边形,故有BP∥DK∥OF, CP
...一开始没想到面积法,不知道怎么证既然你都说出来面积法了,还做不出来么?设等边三角形ABC边长为a,高为h,三角形中任意一点为O到三边的距离分别为m、n、p分别连接AO、BO、COS△AOB=1/
①把三角形内的一点和三个角连接②反向延长三条连线③每条连线取在连线外的另外两个顶点中任意一个顶点作高,每个顶点只作一条高(这步有点难理解,不过画图出来即可)④由勾股定理可知直角三角形斜边大于直角边,三
延长BD交AC于P在三角形ABP中,AB+AP>BD+DP(1)在三角形DPC中,DP+PC>DC(2)(1)+(2)得:AB+AP+DP+PC>BD+DC+DP(消DP,其余的合并)得:AB+AC>
三角形的面积是AB(或CD)乘以到E的距离再乘以1/2E到AB和E到CD的距离和等于AB、CD间的距离AB(或CD)乘以AB、CD间的距离等于平行四边形的面积
等边三角形ABC的边长为a连接PA,PB,PC三个三角形的高为x,y,z所求即为x+y+z考虑三个三角形的面积和=ax/2+ay/2+az/2=a(x+y+z)/2=(1/2)*a*a(√3)/2于是
已知三角形为等边三角形O为任意点由于求点到三边的距离设到三边为ODOEOH可以连接O到ABC三点及OA、OB、OC可以得到三个三角形OABOACOBC又三个三角形面积之和为ABC的面积三角形面积总知道
1)B落到C处旋转的角就等于
1.因为DE//BCFG//CAHI//AB,所以△ODG相似△OFI相似△OHE相似△ABC,所以S1:S2:S3:S=OD^2:IF^2:OE^2:BC^2=BI^2:IF^2:CF^2:BC^2
赶快回答一下,不然关闭了,就可惜了悬赏分了1、由a^2-c^2=b^2-(8bc)/(5)得b^2+c^2-a^2=(8/5)bc所以cosa=(b^2+c^2-a^2)/2bc=4/5∵a=3∴b=