三角形一个内角的平分线,其边长之间的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 07:14:53
三角形一个内角的平分线,其边长之间的关系
三角形内角平分线的性质的证明

过D作AB的垂线,垂足为E过D作AC的垂线,垂足为F因为角平分线上的点到角两边的距离相等所以DE=DF记三角形ADB的面积为S1,三角形ADC的面积为S2则S1:S2=AB:AC(以AB,AC为底来看

画一个三角形三个内角的平分线,你发现了什么?

三线交于一点,这一点叫作这个三角形的内心!

三角形内角平分线定理是什么?

内角角平分线定理角平分线的性质定理.其内容是性质1在角平分线上的点到这个角的两边的距离相等.性质2到一个角的两边的距离相等的点,在这个角的平分线上.综合定理1,2可得如下结论:角的平分线是到角的两边距

三角形内角平分线

解题思路:根据题意,由角平分线的性质可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu

求证三角形内角平分线定理

证明:作DE//AC,交AB于E.角EAD=角CAD=角EDA所以EA=ED所以BD/CD=BE/EA=BE/ED=BA/AC

请告诉我三角形内角平分线的性质

三角形的内角平分线分对边所得的两条线段,与三角形的两条边对应成比例.(即△ABC中,∠A的平分线AD交对边于D,则BD/CD=AB/AC).

三角形内角平分线的性质?

角平分线上的点到角两边的距离相等再问:高中向量这章,不是这个再答:三角形的角平分线分对边所得的两条线段与角的两边对应成比例。再问:就是这个,谢谢啊

三角形内角平分线定理

三角形内角平分线性质定理是:在ΔABC中,若AD是∠A的平分线,则BD/DC=AB/AC应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内分对边,所得的两条线段与这个角的两边对应成比例.

“三角形一个内角平分线与另两个内角的外角平分线交于一点”这个定理怎么证明?

证明:设P是△ABC的两个外角平分线BP,CP的交点过P作PE⊥AB于E,PF⊥BC于F,PH⊥AC于H根据角平分线上的点到角两边距离相等,知PE=PF,PF=PH所以PE=PH又PE⊥AB,PH⊥A

三角形内角平分线定理的证明

△ABC中,AD是角平分线,求证:AB/AC=BD/CD.最简单的方法是用面积证明:一方面:△ABD的面积/△ACD的面积=BD/CD(分别以BD、CD为底,高相同).另一方面,分别以AB、AC为底计

一个三角形的内角平分线又是这个三角形的中线,能否判断这是个等腰三角形

判定:能确定该三角形为等腰三角形,或为等边三角形.理由:因为,一个角的平分线又是该角对边的中线,则该平分线必垂直该角的对边,角平分线分原三角形为两个全等直角三角形,故原三角形的该内角的两边必相等.结论

三角形的内角平分线平分三角形的一个( ),三角形的中线平分三角形的一条( ),三角形三条角平分线

三角形的内角平分线平分三角形的一个(角),三角形的中线平分三角形的一条(边),三角形三条角平分线在三角形内部交于(重)点,三条中线也在三角形内部交于(中)点.

画出三角形三个内角的平分线

你发现了什么特点?发现三角形三个内角平分线交于一点

A三角形的中线角平分线高线都是线段.B任意三角形内角和都是180度.C三角形的一个外角大于任意一个内角

B任意三角形内角和都是180度.正确.A三角形的中线角平分线高线都是线段.正确.高线:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.是线段一个三角

怎样画三角形内角的平分线

用圆规,以角点为中心,在角点的两边上以一半径画圆,在两交点再以同一半径画弧交于角内一点与角点相连便可.

1.三角形一个内角的平分线叫做三角形的角平分线.2.经过三角形任意顶点和对边中点的直线叫做三角那个的中

两个都不对角平分线是射线,而三角形的角平分线是一条线段;三角形的中线,是线段,不能说是直线所以,上面的两个答案都不对.

1)等边三角形的边长为2,求它的中线长,并求出其面积 2)等边三角形的内角平分线的长为根号3,三角形的边长

1)中线长为:根号3,、面积是根号3.2)边长为2再问:过程?再答:等边三角形ABC,过A点AB=连接BC的中点D,因为三角形ABC是等边三角形所以AB的平方=BD的平方+AD的平方带入得,AD=根号