三角形ABC向量OA 2向量OB 3向量OC直线AO交BC于D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:00:15
三角形ABC向量OA 2向量OB 3向量OC直线AO交BC于D
O是三角形ABC的外心,E为三角形内一点,且满足向量OE=向量OA+向量OB+向量OC

向量AE=向量OE-向量OA=向量OB+向量OC(由已知条件得出)向量BC=向量OC-向量OB则有向量AE*向量BC=OC的平方-OB的平方=0(O是外心OC=OB)AE垂直BC

已知点O是三角形ABC的重心,求向量OA+向量OB+向量OC=?

点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量

向量OA+向量OB+向量OC=0向量,且OA=1 OB=2 OC=根号3 则三角形ABC面积

由OA、OB、OC向量构成的三角形三边长可知∠AOB=120°,∠BOC=150°,∠AOC=90°,S△ABC=S△AOB+S△AOC+S△BOC=1/2*(1*2*sin120°+√3*2*sin

若O是三角形内一点且向量OA+向量OB+向量OC=向量零 求证O是三角形ABC的重心!

OB+OC=AO,所以延长AO作BD平行OC交AO于E,有OCED为平行四边形,所以AO为中线,同理可证O为中线交点,即为重心

若O是三角形ABC内一点,满足向量OA+向量OB+向量OC=向量0,求证:O是三角形ABC的重心

设AB中点为D,则向量OA+向量OB=2向量OD=-向量OC则COD共线,即CD是AB的中线,同理可得其他两条中线,而重心是三角形三边中线的交点,那么O是三角形ABC的重心

平面向量的线性运算O是三角形ABC内一点,满足向量OA+向量OB+向量OC=0,|向量OA|=|向量OB|=|向量OC|

let|OA|=|OB|=|OC|=kOA+OB+OC=0OA.OA=(OB+OC).(OB+OC)k^2=2k^2+2OB.OC=>OB.OC=-k^2/2similarlyOC=-(OA+OB)O

三角形ABC内一点O,证明向量OA+向量OB+向量OC等于0向量

前面有的人说的有问题,这个O点在三角形内部的人一点都能满足OA=BO-ABOB=CO-BCOC=AO-CAOA+OB+OC=BO+CO+AO-(AB+BC+CA)所以2(OA+OB+OC)=-(AB+

若O为三角形ABC的内心,且满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0

∵向量OB-向量OC=向量CB=向量AB-向量AC向量0B+向量OC-2向量OA=(向量OB-向量OA)+(向量OC-向量OA)=向量AB+向量AC∴(向量AB-向量AC)*(向量AB+向量AC)=0

点O是三角形ABC所在平面内一点,且向量OA×向量OB=向量OB×向量OC=向量OC×向量OA,则O是三角形ABC的

重心原因如下OA×向量OB=向量OB×向量OC所以OB*(OA-OC)=OB*CA=0就是说OB垂直于AC边向量OB×向量OC=向量OC×向量OA同理OC垂直于AB边所以说O点为三边高线的交点为三角形

已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c

(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA,——》(向量a+向量b)•(向量b-向量a)=(向量b+向量c

若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状

用字母表示向量|OB-OC|=|OB+OC-2OA|平方得OB^2-2OB*OC*cos+OC^2=OB^2+2OB*OC*OC*cos+OC^2+4OA^2-4OA*OB*cos-4OA*OC*co

已知O为三角形ABC所在平面内一点,且满足(向量OB-向量OC)点积(向量OB-向量OA)=0,

向量CB点积向量AB=0说明两向量互相垂直三角形ABC为直角三角形.

若O为△ABC内一点,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA,则O为三角形的什么心

1.OA*OB=OB*OC=OA*OC∴OA*OB-OB*OC=0OB*OC-OA*OC=0即OB(OA-OC)=0OC(OB-OA)=0即OB*AC=0OC*AB=0∴OB⊥ACOC⊥AB∴O是△A

点O在三角形ABC的平面内求证向量OA×向量BC+向量OB×向量CA+向量OC×向量AB=0

根据向量减法可知:向量BC=向量OC-向量OB,向量CA=向量OA-向量OC,向量AB=向量OB-向量OA,∴向量OA×向量BC+向量OB×向量CA+向量OC×向量AB=向量OA×(向量OC-向量OB

已知点O为三角形ABC的重心,且OA=2,则向量OA*(向量OB+向量OC)=

设M为BC中点,则向量OA*(向量OB+向量OC)=OA*2OM=OA*(-OA)=-OA^2=-4

在三角形ABC中有一点O,使得向量OA+2向量OB+2向量OC=0,则三角形ABC与三角形OBC的面积比是多少?

答案:是4:1若注意到向量加法的几何意义,作出图形,并对图形面积间进行转化.延长OB至G,使得OG=2OB;延长OC至H,以点OG、OH为邻边作一平行四边形OGFH,连结OF,则由已知向量OA=-(2

在三棱锥O-ABC中,G是三角形ABC的重心,用向量OA,向量OB,向量OC表示向量OG

重心是中线的交点;则:向量OG=(向量OA+向量OB+向量OC)/3

三角形ABC和一点O,满足向量:OA2+BC2=OB2+CA2=OC2+AB2(以上皆为平方,向量方向为字母顺序),求点

O是三角形的重心,由OA2+BC2=OB2+CA2→OA2+BC2-OB2-CA2=0→2OC乘以AB=0→OC⊥AB,同理推出OA⊥BC,OB⊥CA,所以点O是三角形的重心