三角形abc内接于圆o,ab为直径,角B等于30度,CE平分角ACB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:09:06
1对,因为oa=ob(均为半径)三角形aob是等腰三角形,od是AB的中线也是其垂线,这是等腰三角形的性质.2对,因为DO是AB的垂直平分线,垂直平分线上任意一点与A、B两点的连线距离相等,这是垂直平
主要步骤:由AB为直径,AC=BC,可知△ABC是等腰RT△,BC⊥AC,又PA⊥面ABC,则PA⊥BC,即BC⊥面PAC,故∠BPC为直线PB与面PAC所形成角.AB=2√2,PA=AB=2√2,P
连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2
补充:连结AD交BC于点E证明:∵D是弧BC的中点,∴∠DAC=∠BAD,又∵∠C=∠D,∴△AEC∽△ABD,∴AC/AE=AD/AB,证毕.
关于如图,三角形ABC内接于圆O
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
正确答案有2个各为(1),(2)连接OAOB则OA=OB因为D为中点所以AD=BD因为OD=OD所以三角形AOD全等于三角形BOD所以角ADO=角BOD=90度所以DE是AB的中垂线所以AE=BE
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
嗯.但为什么要问呢?
ED=DF(角平分线定理)因为,∠1=∠2,所以弧BD=弧DC(等圆周角对等弧),所以BD=BC(等弧对等边)所以三角形EBD、DCF全等,所以BE=CF
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
用正弦定理AC/sin30度=2RR为半径,R=2
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
EF是圆O的切线证明:∵AB是圆O的直径索要交ACB=90°∴∠B+∠BAC=90°∵∠EAC=∠B∴∠EAC+∠BAC=90°∴∠EAB=90°∴EF是圆O的切线再问:在平面直角坐标系中,圆M与x轴
∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60
第一问很好证.∵∠BCD=∠BAD,∠BCD=∠ACD∴∠BAD=∠ACD又PD圆的切线∴∠PDA=∠ACD∴∠PDA=∠BAD∴DP∥AB