三角形abc内接于圆o ab为圆O的直径,角ACB的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:08:23
1对,因为oa=ob(均为半径)三角形aob是等腰三角形,od是AB的中线也是其垂线,这是等腰三角形的性质.2对,因为DO是AB的垂直平分线,垂直平分线上任意一点与A、B两点的连线距离相等,这是垂直平
因为AB弧所对的圆心角为∠AOB,圆周角为∠C所以∠AOB=2∠C因为OA=OB,所以∠OAB=∠OBA因为∠OAB=∠C所以∠AOB=2∠OAB=2∠OBA在△OAB中,由内角和定理,得
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
关于如图,三角形ABC内接于圆O
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
正确答案有2个各为(1),(2)连接OAOB则OA=OB因为D为中点所以AD=BD因为OD=OD所以三角形AOD全等于三角形BOD所以角ADO=角BOD=90度所以DE是AB的中垂线所以AE=BE
(3OA+4OB)^2=9+16+24OA*OB=(-5OC)^2=25.则:OA*OB=0,OA垂直于OB.以O为原点,OA,OB为x,y轴建立平面直角坐标系,设C坐标为(u,v)3(1,0)+4(
3OA+4OB=5CO因为345是勾股数,所以OA与OB垂直,所以OA*OB=O.同样得OB*OC=-4/5,OC*OA=-3/5.则AOC的正弦值为3/5,BOC的正弦值为4/5,所以可求得S△AO
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2
即3OA+4OB=5CO,因为345刚好是一组勾股数,所以OA与OB垂直,所以OA.OB=O.同样利用345组成的夹角可求得OB.OC=-4/5,OC.OA=-3/5.所以AOC的正弦值为3/5,BO
嗯.但为什么要问呢?
用正弦定理AC/sin30度=2RR为半径,R=2
此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC
∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60
由S=(1/2)*BC*AD=(1/2)*10*AD=100,求出AD=20;由EH平行于BC,可知三角形AEH与三角形ABC相似,得EH/BC=AH/AC;又三角形AMH与三角形ADC相似,得AM/
解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B
即3OA+4OB=5CO,因为345是一组勾股数,所以OA与OB垂直,所以OA*OB=O.同样得OB*OC=-4/5,OC*OA=-3/5.则AOC的正弦值为3/5,BOC的正弦值为4/5,所以可求得