三角形ABC为圆O的内接三角形,AB=1,角C=30°,则圆O的内接正方形面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:07:06
三角形ABC为圆O的内接三角形,AB=1,角C=30°,则圆O的内接正方形面积
三角形是圆o的内接三角形

三角形的重心应该是圆的圆心

三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

已知三角形ABC是直径长为10厘米的圆O的内接等腰三角形,且底边BC=8厘米,求S三角形ABC

从a点向bc边做垂线,垂足为d,又因三角形ABC为等腰三角形,所以bd=cd,连接bo,在三角形bod中,bo=5,bd=4,所以od=3所以ad=5+3=8三角形abc面积=8*8/2=32

如图所示,三角形ABC为圆O的内接三角形,AB=1,角C=30度,则圆O的内接正方形的面积为多少?

连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

三角形ABC内接与圆O,AB=AC,角AOC=135度,圆O的半径为根号2,求三角形ABC的面积

延长AO与BC交于M因为AB=ACAM⊥BC∠AOC=∠AOB=135∠BOC=90OB=Oc=√2BC=2,OM=1AM=√2+1面积=√2+1

已知O为三角形ABC所在平面内一点,

在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和

三角形ABC内接于圆O,角B=30度,AC=2,则圆O半径长为?

用正弦定理AC/sin30度=2RR为半径,R=2

如图,三角形abc为圆o的内接三角形,i为三角形abc的内心,ai的延长线交bc于点e,交圆o于点d.①求证:db=d

此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC

圆O半径为1厘米 三角形ABC为圆O的内接三角形 BC=根号2 那么∠A=

45°因为BC的长度是根号2,那么连接OB、OC,即可得到∠BOC=90°那么∠A的度数就是∠BOC的一半,45°

三角形ABC是圆o的内接三角形,若角ABC=70度,则角AOC=?3Q

140度圆内相同的弧所对应的圆周角是相应的圆心角的一半

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

在圆O的内接三角形ABC中,AB+AC=12

连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B