三角形ABC中,a:b:c=2:根6:根3 1解三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:08:13
三角形ABC中,a:b:c=2:根6:根3 1解三角形
三角形ABC中,三内角A.B.C满足2B=A+C,且A

2B=A+C3B=A+B+C=180°B=60°tan(A+C)=-tanB=-√3=(tanA+tanC)/(1-tanAtanC)tanA+tanC=3+√3tanAtanC=2+√3tanA=1

在三角形ABC中 C=2B b、a、c成等差数列 判断三角形形状.

在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi

在三角形ABC中 证明S三角形ABC=[a^2sinBsinC]/2sin(B+C)

设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as

在三角形ABC中 求证:(a^2-b^2)/c^2=(sin(A-B)/sinC

根据正弦及余弦定理可得sin(A-B)/sinC=(sinAcosB-cosAsinB)/sinC=(acosB-bcosA)/c=[(a²+c²-b²)/2c-(b&#

三角形ABC中,[cos(A/2)]的平方=(b+c)/2c,则三角形ABC的形状是什么?

由正弦定理:b/2R=sinB,c/2R=sinC所以(b+c)/2c=[(2RsinB)+(2RsinC)]/[2(2RsinC)]=(sinB+sinC)/2sinC所以:cos^2(A/2)=(

在三角形ABC中,已知b=c cosA,c=2a cosB,试判断三角形ABC的形状.

=ccosA,2b^2=b^2+c^2-a^2c^2=b^2+a^2,直角三角形c=2acosB=2asinAa/c=sinA,c=2a*(a/c)c=√2a,A=B=45°,等腰直角三角形

在三角形ABC中 sinA/sinB/sinC=A/B/C且c=2求三角形ABC的面积

你在搞笑吗?再问:你是在逗我再答:你这题目有问题吧,而且sinA:sinB:sinC=A:B:C这个是本来就成立的~!再问:原题就是这再答:等边三角形可以的。等边三角形的面积就是根号3

在三角形ABC中,a^2=b(b+c),求证A=2B

证明:因为a^2=b^2+c^2-2bccosA,又由题意知,a^2=b^2+bc所以c^2-2bccosA=bc则c=b(1+2cosA)所以由正弦定理c/sinC=b/sinB得sinB+2cos

三角形ABC中,若角A=2角B=3角C,则三角形ABC是什么形状的三角形

因为角A=2角B=3角C所以∠A:∠B:∠C=6:3:2所以∠A=180x6/(6+3+2)=98.2所以△ABC是钝角三角形

已知三角形ABC中,2B=A+C,b^2=ac,证明三角形ABC为等边三角形

A+B+C=180°3B=180°B=60°由余弦定理a^2+c^2-b^2=2accosBa^2+c^2-ac=2ac*1/2(a-c)^2=0a=c且B=60°可知三角形ABC为等边三角形

三角形ABC中,(a+b+c)(b+c-a)=3bc,且a=2b cos C,判断三角形ABC的形状

a=2bcosC根据"正弦定理"得:a/sinA=b/sinB即:sinA=2sinBcosC(a+b+c)(b+c-a)=3bc(b+c)^2-a^2=3bcb^2+c^2-a^2=bc所以cosA

在三角形ABC中,a+c=2b,A-C=pi/3.

(1)A-C=pi/3A+C=pi-B所以:2A=4pi/3-B即:A=2pi/3-BC=pi-A-B=pi/3-B/2(2)由正弦定理及“a+c=2b”,得:sinA+sinC=2sinBsinA+

在三角形ABC中,a+c=2b,A-C=π/3,求sinB

a+c=2b利用正玄定理可以得到sina+sinc=2sinb然后A+C=π-BA-C=π/3可以得到A=2π/3-B/2C=π/3-B/2带到sinA+sinC=2sinB里化简sin(2π/3-B

三角形abc中,2B=A+C,则sin^2A+sin^2C属于

题干应该是属于哪个取值范围吧!就按这个意思回答了.答案:[3/4.3/2]由题意知ABc=3B=π故B=π/3即AC=2π/3现把A角设为变量C角设为常量有A£(02π/3)sin?Asin?C=si

在三角形ABC中,已知2SIN A * COS B =SIN C,那么三角形ABC是什么三角形?

2sinAcosB=sin(A+B)+sin(A-B)=sinC+sin(A-B)=sinC所以sin(A-B)=0所以A=B所以,△ABC是等腰三角形.完毕.

三角形ABC中,a:b:c=1:根3:2,求A:B:C

1:2:3再问:过程,谢谢再答:比例同时除以2根据正弦定理将边化为sinA:sinB:sinC=(1/2):(根3/2):1即A:B:C=30度:60度:90度=1:2:3

在三角形ABC中,若cos^2A/2=(b+c)/2c,试判断三角形ABC的形状

cos²(A/2)=(1/2)[cosA+1]=(sinB+sinC)/2sinC,即:sinC(cosA+1)=sinB+sinC=sin(A+C)+sinCsinCcosA+sinC=s

在三角形ABC中,若a2=b(b+c),求证:A=2B

因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos