三棱锥D-ABC内接于球o DA垂直ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:48:57
这道题目可以这样来理解有个长方体PAPBPC为该长方体的棱则三棱锥P-ABC的外接圆就是该长方体的外接圆则球的直径为根号下(3平方+2平方+3)=4即半径为2根据球的体积公式求得体积为32π/3
解题思路:结合三角形相似进行求解解题过程:解:设EF=x,则EH=,DP=x,AD=AP+DP=16+x,∵EH∥BC,∴△AEH∽△ABC,∴,∴解得,x=4或x=-8(负值舍去)即DP=4∴最终答
貌似你漏写了BA=BC这个条件
如图,设三棱锥A-BCD的外接球球心为O,半径为r,BC=CD=BD=3,AB=AC=AD=2,令AM⊥平面BCD,则M为正△BCD的中心,则DM=1,AM=3,OA=OD=r,由图知(3-r)2+1
有些数学问题,其部分条件隐于图形之中,若能抓住图形的“特征”,利用运动变换的观点,恰当地添设辅助图形,就能发现含而未露的条件,使问题获解.三条侧棱两两垂直且长都为1的三棱锥P-ABC内接于球O,求球O
解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ
因为此图为SOA平面截球和三棱锥得到的,所以可以确定点O就在平面ABC上.SA为正三棱锥的侧棱,长度为6√2由于O在△ABC上,由S-ABC为正三棱柱,可以确定O即为等边△ABC的中心,由此可以计算得
以三棱锥的三条侧棱为“三度”作出一个长方体,(“三度”指长度,宽度,高度)那么长方体的体对角线就是三棱锥外接球的直径.由题意,三侧棱长均为1,∴所作的长方体是正方体,且体对角线长为√3∴外接球O的直径
以三棱锥的三条侧棱为“三度”作出一个长方体,(“三度”指长度,宽度,高度)那么长方体的体对角线就是三棱锥外接球的直径.由题意,三侧棱长均为1,∴所作的长方体是正方体,且体对角线长为√3∴外接球O的直径
证明:取AS中点E,连接BE,CE,SB=AB,SC=AC则SA⊥BE,A⊥CEBE交CE于E∴SA⊥平面BCE∴SA⊥BC又AD⊥BC,SA交AD于A则BC⊥平面SAD且H∈AD∴SH⊥BC又SH⊥
本题考的是空间想像力!首先是球,过球心的截面必是半径为求的半径的圆!其次是正四面体,任何一个满足条件的截面最多只能过四面体的两个顶点,此时必为等腰三角形,顶角可以计算=2arccos(√3/3)!(技
证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两
(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和
有些数学问题,其部分条件隐于图形之中,若能抓住图形的“特征”,利用运动变换的观点,恰当地添设辅助图形,就能发现含而未露的条件,使问题获解.三条侧棱两两垂直且长都为1的三棱锥P-ABC内接于球O,求球O
设三棱锥P-ABC底面ABC的重心为I,外接球球心为O由已知得:AB=BC=CB=√2,PI⊥BI故,由重心定理得:BI=(√2/2)*√3*(2/3)=√6/3∴PI=PB^2-BI^2=√3/3又
半径为:根号3除以2方法:这个题应用特殊模型法,即把三棱椎放入边长为1的正方体的一个角上,这样就成了求正方体外接球的半径了.经验:这类题出现频率很高,必须抓住特殊条件,即三棱椎的三条棱垂直,即可利用正
三条侧棱两两垂直且长都为1的三棱锥P-ABC内接于球O,求球O的表面积与体积.分析:由三棱锥三条侧棱两两相互垂直且相等,可联想正方体的一个“角”,故可构造正方体来处理.解如图1-2,以三棱锥P-ABC
∵BS =BC,又DE垂直平分SC∴BE⊥SC,SC⊥面BDE∴BD⊥SC,又SA⊥面ABC∴SA⊥BD,BD⊥面SAC∴BD⊥DE,且BD⊥DC则∠EDC就是所要求的平面角设SA=AB&n
这个.这张图不是正视图,侧楞SA现在是斜对着你的.由于给出的条件是正三棱锥,所以在每一个顶点到别的顶点的距离都相等;由图知一条侧楞过圆心,所以正三棱锥有一顶点在圆心,这样就好求了.半径为6就是说棱长为
连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20