一直数列an的前n项和为sn等于32n-n2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:05:06
一直数列an的前n项和为sn等于32n-n2
设数列{an}的前n项和为Sn=2an-2n,

(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n属于正整数

a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5

一直数列an的前n项和为Sn=10n-n^2,球数列{ I an I }的通项公式,求{ I an I }前n项和Hn?

依题意有:S(n-1)=10(n-1)-(n-1)^2an=Sn-S(n-1)=11-2n所以:当n

数列an的前n项和为sn =n² -1,求通项an

an=Sn-S(n-1)=n^2-1-[(n-1)^2-1]=2n-1

已知数列{an}的前n项和为Sn,Sn=(an-1)/3 (n∈N)

n=1,S1=a1=(a1-1)/3,a1=-1/2;n=2,S2=a1+a2=(a2-1)/3,a2=+1/4;an=Sn-Sn-1=(an-1)/3-(an-1-1)/3=an/3-an-1/32

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a

已知数列{An}的前n项和为Sn,且Sn=n²+n(n∈N*)

1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-

已知数列{an}的前n项和为Sn,Sn=13(an−1)(n∈N*).

(Ⅰ)由S1=13(a1−1),得a1=13(a1−1)∴a1=−12又S2=13(a2−1),即a1+a2=13(a2−1),得a2=14.(Ⅱ)当n>1时,an=Sn−Sn−1=13(an−1)−

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{

数学试题:已知数列{an}前n项和为Sn

S1=a1=1-1*a12a1=1a1=1/2S2=1-2a2=a1+a2=1/2+a23a2=1/2a2=1/6Sn=1-nanSn-1=1-(n-1)a(n-1)相减an=Sn-Sn-1=1-na

数列{an}的前n项和为Sn,且Sn=13(an−1)

(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*)

an+1=2Snan-1=2Sn-1an+1-an-1=2anan=(-1)^(n+1)Sn=1/2+1/2*(-1)^(n+1)看懂了给我满意,没有别的要求,

设数列{an}的前n项和为Sn,Sn=a

设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2

已知数列{an}的前n项和为Sn,且Sn=23an+1(n∈N*);

(Ⅰ)a1=3,当n≥2时,Sn−1=23an−1+1,∴n≥2时,an=Sn−Sn−1=23an−23an−1,∴n≥2时,anan−1=−2∴数列an是首项为a1=3,公比为q=-2的等比数列,∴

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

数列{an}的前n项和为Sn,Sn=1-23

∵数列{an}的前n项和为Sn,Sn=1-23an,∴a1=s1=1-23a1,解得 a1=35.且n≥2时,an=Sn-Sn-1=(1-23an)-(1-23an-1)=23an-1-23

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程:

一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An

Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]