一直圆o的半径为1,弦ab=1,ac=根号2,则∠bac=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:45:41
一直圆o的半径为1,弦ab=1,ac=根号2,则∠bac=
已知圆O的半径为1CM,弦AB=根号2CM,求角AOB的度数.

三角形AOB是等腰三角形(OA=OB=1)又因为OA^2+OB^2=AB^2(1+1=2)所以角AOB=90°

一直圆o的半径为12,弦AB=16,当弦AB的两个端点在圆周上滑动时,弦AB的中点形成了什么样的图形

对于同一个圆,圆心到所有相同弦长的弦距离相等,即相同弦长的弦的中点到圆心距离相等,所以弦AB的中点形成了一个以O为圆心的圆以O为圆心,以4*根号5为半径的圆因为若设AB中点为M,则OM长度始终为4倍根

如图,AB为圆O直径,CD为弦且CD垂直AB,垂足为H,圆O的半径为1,CD=根号三,求点O到弦AC距离

连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

ab.cd是圆o中两条互相垂直的弦,ab.cd的交点e到圆心o的距离为1,圆的半径为2

作OF垂直AB于F,作OG垂直CD于G,由已知可得四边形FOGE是矩形,由垂径分弦定理得AB=2AF,CD=2DG,所以AB^2+CD^2=4AF^2+4DG^2=4(OA^2-OF^2)+4(OD^

如图,ABC是圆O上三点,且角ACB=45度,圆O的半径长为1,求弦AC AB的

连结AO并延长与圆O相交于点D,连结BD,由圆的性质,AD为直径,AD=2,∠ABD=90º,又∠ADB与∠ACB同对着弦AB,∴∠ADB=∠ACB=45º,∴在直

圆O的半径为5cm,弦AB为6cm,在圆O上到直线AB的距离为1cm的点有 个

如图,明显直线上部存在两个点,下部存在一个点总共3个.

AB,CD是圆O的两条平行弦,位于圆心同旁,AB=6,CD=8,AB,CD间距离为1,求半径

设半径为r,圆心到弦长为8的距离为x,则r^2-x^2=4^2r^2-(x+1)^2=3^2解得:r=5,x=3答案为5

ab为圆o的弦,半径oc垂直于ab于点d,若oc等于5,cd等于1,则ab为.

下面的没过程,我说详细点.0D=0C-CD=5-1=4OB=OC(半径)=5根据勾股定理得BD=3又OC是半径,AB是弦,且∠ODB为直角.根据垂径定理,AB=2BD∴AB=2X3=6不懂的可以继续问

数学垂径定理题.急,已知ab为圆o的弦,点c为弧ab的中点,点o到ab的距离为1,bc=二倍根号三求圆o半径o到ab的距

设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&

圆O中弦AB与CD相交于点P,∠1=∠2求证AB=CD,(2)若AB⊥CD,圆O的半径为2,且OP=√ 2,求AB的长

证明:(1)过O点作OM⊥AB于M,ON⊥CD于N则∠OMP=∠ONP=90º又∵∠1=∠2,OP=OP∴⊿OMP≌⊿ONP(AAS)∴OM=ON∴AB=CD【弦心距相等,弦相等】(2)接用

j已知AB是半径为1的圆O的一条弦,且AB=a小于1,以AB为一边在圆O内作正三角行ABC,D为圆O上不同于点A的一点,

答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

1.已知AB是半径为1的圆O的一条弦,且AB=a

第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..

已知圆O半径为1,弦AB、AC长为根号2,根号3,则角BAC的度数为?

连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°

如图,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H,圆O的半径为1,CD=根号三,圆心到AC的距离

作OF⊥AC∵OA=OB=OC=1CD=根号3AB⊥CD∴CH=根号3/2∴OH=1/2∴BH=1/2∴BC=1∴△OBC为正△∴∠B=60°∵AB为直径∴∠ACB=90°∴∠A=30°∴OF=1/2

1.已知圆O的半径为1cm,弦AB=根号2,则弦AB所对的圆心角角AOB=____.

(1)三角形AOB满足:AO^2+BO^2=AB^2=2所以:三角形AOB为RT三角形,角AOB=90度(2)三边到O的距离相等,所以O为三条角平分线的交点角OBC+角OCB=(1/2)角ABC+(1

在半径为1的⊙O中,弦AB=1,则AB的长是(  )

如图,作OC⊥AB,则利用垂径定理可知BC=12∵弦AB=1,∴sin∠COB=12∴∠COB=30°∴∠AOB=60°∴AB的长=60π180=π3.故选C.