一直四边形ABCD为正方形AB等于三倍根号二点E为对角线AC上一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:02:25
S△CBE=S△DCFSBEGF=S△DGCS△FGC≌S△DGCS△FGC/S△DGC=(FC/CD)^2=1/4S△FCD=4S△FGC=16/5SBEGF=16/5
第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必
http://zhidao.baidu.com/question/452997972.html?seed=0
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
少条件,只能证明MNPQ是菱形,如果要证明还要有AC垂直于BD的条件证明:在空间四边形ABCD中,M,N,P,Q分别为AB,BC,CD,DA的中点则,MN、NP、PQ、QM分别是所在三角形的中位线所以
取坐标系,D﹙0,0,0﹚A﹙1,0,0﹚C﹙0,1,0﹚ P﹙0,0,2﹚则B﹙1,1,0﹚Q﹙1,0,1﹚ PB=﹛1,1,-2﹜﹙向量﹚,QB=﹛0,1,-1﹜,
先算出四边形ABCD和四边形DCEF的面积剪去三角形AMD,DFE,MBE的面积
连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC∴△ABC与△AFC是同底等高的三角形∵2S△ABC=S正ABCD,S正ABCD=2×2=4∴S=2故选A.
应该是PQ⊥面DCQ∵QA⊥面ABCDPD∥QA∴PD⊥面ABCD∴PD⊥CD又CD⊥AD∴CD⊥面ADPQ∴CD⊥PQ∵QA=AB∴∠QDA=45°∴∠PDQ=45°又PD=2QA=2√2QD∴△Q
∵相似∴AD:CD=AB:CF∵AD=CF+1∴CF+1:1=1:CF∴CF=(根号5-1)/2∴AD=(根号5+1)/2
(1)通过PD∥QA,CD∥AB,PD、CD相交,QA、AB相交,证明平面PCD∥QAB,再证明BQ∥平面PCD(2)PD⊥平面ABCD,PD∥QA,可得QA⊥平面ABCD通过线面垂直,得QA⊥AB、
2梯形GBAF的面积=(FG+AB)乘以BG除以2=(FG+AB)乘以FG除以2=(BG+BC)乘以FG除以2=CG乘以FG除以2=△CGF的面积所以△AFC的面积=△ABC的面积=2乘以2除以2=2
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
1.DQ=PQ=√2,DP=2所以DQ^2+PQ^2=DP^2所以DQ⊥PQCQ=√3,PQ=√2,PC=√5所以CQ^2+PQ^2=CP^2所以CQ⊥PQ所以PQ⊥平面DCQ所以平面PQC⊥平面DC
∵正方形ABCD和正方形EFGB,∴AB=BC=CD=AD,EF=FG=GB=BE,∵正方形ABCD的边长为2,∴S△AFC=S梯形ABGF+S△ABC-S△CGF=12×(FG+AB)×BG+12×
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
连接BF∵ABCD是正方形∴∠ACB=45°∵BEFG是正方形∴∠FBG=45°∴∠ACB=∠EBG∴BF∥AC(同位角相等,两直线平行)∴△AFC和△ABC的高相等,(平行线间的距离相等)∵△AFC
你一个长都没给.再答:那我就设正方形边长为a了再问:就是设边长为a再答:2√3a再答:应该没错再问:过程写出来再答:一句话的事再答:再答:给个好评。。。再问:看不清再答:再答:再答:再答:再答:认真看