(2n-1)²分之1的级数值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:28:01
(2n-1)²分之1的级数值
判别级数∑(n+1)/2^n的敛散性

利用比值判别法可判别该级数收敛.为求和,作幂级数   f(x)=∑{n>=0}(n+1)x^n,|x|=0}(n+1)∫[0,x](t^n)dt  =∑{n>=0}x^(n+1)  =1/(1-x)-

怎么判断级数 n/2n-1 的敛散性

Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~

1/n(n+1)(n+2)的级数求和

1/1*2*3+1/2*3*4+1/3*4*5+.+1/n(n+1)(n+2)+.sn=1/2*[1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+.+1/n(n+1)-1/(n

级数n+1分之1的收敛性

发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.

级数∑(n=1,n→∞) 1/√n(n+1)(n+2)与级数∑(n=1,n→∞)1/n的2分之3次方 具有相同的敛散性,

实在不懂这题要你证明他们具有相同的敛散性为什么你只想知道1/n那个诶~首先,当n趋近于正无穷的时候1/√n(n+1)(n+2)就约等于1/√n*n*n就等于1/n的2分之3次方.然后两者相除等于1即得

(-1)^n/(2n+1)的无穷交错级数求和

直接在arctanx的Maclaurin展开当中代x=1即可楼上的做法也是对的,只不过需要引进虚数及Euler公式了

级数(1/n) × sin(πn/2)的敛散性

该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/

级数2/3^n-1/n^0.5的收敛性

一个收,一个发,所以还是发散再问:一个收敛,一个发散,就一定是发散吗?请问有证明之类的过程吗?再答:不一定,你这道前面等比,后面p,容易判断再问:你确定吗?再答:看级数1/n^0.5-2/3^n吧,n

求级数(-1)^(n-1)/n^2的和

如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1

判断级数ln(n+1分之n)的收敛性

利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1

判别级数∑(-1)^n*(lnn)^2/n的敛散性

/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x

求级数2n-1/3^n的敛散性

再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步

判定级数∑(1,+∞)n/2^n的敛散性

比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.

求级数的敛散性 ∑2n+1分之n+1 n趋于∞

因为级数的通项(n+1)/(2n+1)趋于1/2不等于0,级数发散.

求级数的敛散性 ∑n(2n+1)分之1 n趋于∞

∑n(2n+1)分之1小于∑n^2分之1,两者都是正项级数,∑n^2分之1由Cauchy收敛准则显然收敛,所以由正项级数的比较判别法可知∑n(2n+1)分之1必然收敛

求级数的敛散性 ∑n的平方+1分之n+1 n趋于∞

发散,用比较判别法的极限形式,和1/n比较为了表示方便一点,设an=n的平方+1分之n+1,bn=1/nn趋于∞时an/bn的极限=1所以an和bn同敛散性而bn发散(书上的基本结论,要记住),所以a

求级数(-1)^n/(2n+1)的和

(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=