一无限长,半径为R的圆柱体上电荷均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:25:19
一无限长,半径为R的圆柱体上电荷均匀分布
求解大学普通物理学题一无限长的半径为R的圆柱体内,电荷均匀分布,.圆柱体单位长度的电荷为q,用高斯定理求圆柱体内距轴线的

晕,这是大学物理书上的例题呀?书上就有.作一闭合圆柱面取r为半径,高度为H,根据高斯定理可知闭合高斯面的总电通量等于电荷代数和除以真空中介电常数.此闭合高斯面(圆柱面)侧面上电场强度为常数,所以电通量

求无限长均匀带电圆柱体内外场强,已知带电量为Q,圆柱体半径为R.

取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷

物体A和半径为r的圆柱体B用细线相连接并跨过定滑轮,半径为R的圆柱体C穿过细绳后搁在B上,三个物体的质量分别为mA=0.

比较容易的一道题解析:设C与圆孔接触前的一瞬间,速度为V,此时C的速度最大,动摩擦因为为u在h1之间根据功能定理(mc+mb)gh1-ma*g*u*h1=1/2(ma+mb+mc)V^2(1)在h2之

如图,将一边长为2a的立方体匀质木块放在一半径为R的水平放置的圆柱体的顶部,欲使平衡为稳定平衡,试求R与a的关系.(假定

由于滚动摩擦相对滑动摩擦来说,几乎为零,所以当这个平衡不稳定的时候,就是木块和圆柱之间‘滚动’的情形.所谓滚动,就是木块和圆柱之间相对运动之后,接触点之间的路程相等,就是说,如果发生一个小运动,木块向

一个半径为R的无限长圆柱体均匀带电,电荷体密度为p.求圆柱体内外任意一点的电场强度.

以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再

如图所示,半径为R,质量为M的圆柱体放置在水平地面上,与高为h的台阶接触,接触部位够粗糙,现在圆柱体上施加一作用力,使它

以台阶的接触点为支点,利用力矩平衡的原理(动力×动力臂=阻力×阻力臂),由于重力的力矩为Mg√[R2-(R-h)2]是一个定值,所以当外力的力臂最大时所用的外最小.既当外力的力臂为圆柱的直径时(过支点

已知圆台的上底面半径为r,下底面半径为R,母线长为l,试证明:

证明:把圆台还原成圆锥,并作出轴截面,如下图:设AB=x,BC=l,∵△ABF∽△ACG.∴rR=xx+l,∴x=rlR-r.∴S圆台侧=S扇形ACD-S扇形ABE=12•2πR(x+l)-12•2π

物理,稳恒磁场一半径为R的无限长导线圆筒,其表面均匀通有沿轴向流动的电流I.欲表示其周围的磁感强度B随x的变化,则在图(

就是运用环流定律.在导线内部的圆环中没有电流,所以磁场是0.在导线外部的圆环中电流是I,故根据B*2πx=μ*I得B=μ*I/(2πx)故选B.

如图,图中每个电阻阻值为R,电路右边无限长,求AB间的电阻值

这个题通过无限的思想,就是可以多一个少一个无所谓的思想来解答那我们把AB间的电阻看成由两部分电阻并联而成的:一部分就是AB间夹得最近的、图上标着R的那个电阻;另一部分就是剩余的所有电阻组成的一个等效电

电阻计算 截面积变化如何计算半径为r、高为h的圆柱体导体电阻值,电流是从圆柱体侧面通入(高),而非从圆柱体的上下圆面通入

是一样的,因为流入导体后,电流就会迅速沿这个圆柱形导体流动,所以无论从那里流进都一样.计算公式:R=p*L/SS=2piRL=h你没明白我说的什么意思,你说的等于是电流在有限三维内运动,而且各个方向的

设一无限长均匀带电圆柱面,半径为R,单位长度上带电量+a,求电势分布

无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆

一轻绳两端各系一小球A和B,且mA>mB,轻绳和小球跨放在一个光滑的半径为R的圆柱体上,A和B刚好贴在圆柱体截面水平直径

当小球B到达圆柱最高点时,刚好脱离圆柱体,说明此时小球B的重力正好提供其向心力,则v=√(gR)由于只有重力做功,所以机械能守恒重力势能变化量为mAgπR/2-mBgR动能变化量为1/2*(mA+mB

已知圆柱体的底面半径为r,高为h,不断地把圆柱体“压矮”,

我来说一下第二题吧,你的答案是错的,等体积的圆柱体的表面积有一个最小值,此时它最接近球体,(所有等体积的物体中球的表面积最小);此时高或半径是个临界值,高于或低于此值表面积都会增加,但问题是:一开始的

一无限长导线弯成如图所示的形状,圆弧导线的半径为R,导线中的电流为I,求圆心处的磁感应强度

两头无线长的导线在0处产生的磁场一个向上,一个向下,且刚好抵消.所以只需要算出中间那一段弧在o处产生的磁感应强度,B=ΣkI△L/R^2=(2π/3)RIK/R^2=2πIK/3R方向向上其中K=μ/

磁场中的介质一个磁导率为μ1的无限长均匀磁介质圆柱体,半径为R1,其中均匀地通过电流I.在它外面还有一半径为R2的无限长

这是大物(下)的题.因同轴圆柱体的电流分布具有轴对称性,故圆柱体中各区域的磁感应线都是以圆柱轴线为对称轴的同心圆.在内导体圆柱中作一半径为r、和轴线同心的圆环形闭合回路,回路绕行方向与磁感应线方向相同