A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:43:22
A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2
1.
证明:
由于:A,B,C,为三角形内角
则:A+B+C=兀
则:
sin(A/2)•sin(B/2)•sin(C/2)
=sin(A/2)•sin(B/2)•cos((A+B)/2)
=1/2{cos[(A-B)/2]-cos[(A+B)/2]}*cos[(A+B)/2]
=1/2{-cos^2[(A+B)/2]+cos[(A-B)/2]•cos[(A+B)/2]}
≤1/2{-cos^2[(A+B)/2]+cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]+1/4-1/4}
=-1/2{(cos[(A+B)/2]-1/2)^2-1/4}
=-1/2(cos(A+B)/2-1/2)^2+1/8
≤1/8
当且仅当cos(A+B)/2=1/2,A+B=120°时取等号.
2.由于:
4^x=(1+f(x))/(1-f(x))
整理得:
f(x)
=(4^x-1)/(4^x+1)
=1-2/(4^x+1)
故:
f(x1+x2)=1-2/(4^(x1+x2)+1)
所以只要求出4^(x1+x2)最小值即可
设:4^x1=m,4^x2=n,
则:4^(x1+x2)=mn
则:
f(x1+x2)
=1-2/(4^(x1+x2)+1)
=1-2/(mn+1)
又:
f(x1)=1-2/(4^x1+1)=1-2/(m+1)
f(x2)=1-2/(4^x2+1)=1-2/(n+1)
所以由f(x1)+f(x2)=1
得:1-2/(m+1)+1-2/(n+1)=1
2/(m+1)+2/(n+1)=1
设m+1=p,n+1=q
则:2/p+2/q=1,pq=2(p+q)>=4根号pq
即有(pq)^2>=16pq ,pq>=16
所以
(mn)min
=(p-1)(q-1)
=pq-(p+q)+1
=pq-(1/2)pq+1
=(1/2)pq(min)+1
=(1/2)*16+1
=9
所以:
Min(f(x1+x2))
=1-2/(mn+1)
=1-2/(9+1)
=4/5
证明:
由于:A,B,C,为三角形内角
则:A+B+C=兀
则:
sin(A/2)•sin(B/2)•sin(C/2)
=sin(A/2)•sin(B/2)•cos((A+B)/2)
=1/2{cos[(A-B)/2]-cos[(A+B)/2]}*cos[(A+B)/2]
=1/2{-cos^2[(A+B)/2]+cos[(A-B)/2]•cos[(A+B)/2]}
≤1/2{-cos^2[(A+B)/2]+cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]+1/4-1/4}
=-1/2{(cos[(A+B)/2]-1/2)^2-1/4}
=-1/2(cos(A+B)/2-1/2)^2+1/8
≤1/8
当且仅当cos(A+B)/2=1/2,A+B=120°时取等号.
2.由于:
4^x=(1+f(x))/(1-f(x))
整理得:
f(x)
=(4^x-1)/(4^x+1)
=1-2/(4^x+1)
故:
f(x1+x2)=1-2/(4^(x1+x2)+1)
所以只要求出4^(x1+x2)最小值即可
设:4^x1=m,4^x2=n,
则:4^(x1+x2)=mn
则:
f(x1+x2)
=1-2/(4^(x1+x2)+1)
=1-2/(mn+1)
又:
f(x1)=1-2/(4^x1+1)=1-2/(m+1)
f(x2)=1-2/(4^x2+1)=1-2/(n+1)
所以由f(x1)+f(x2)=1
得:1-2/(m+1)+1-2/(n+1)=1
2/(m+1)+2/(n+1)=1
设m+1=p,n+1=q
则:2/p+2/q=1,pq=2(p+q)>=4根号pq
即有(pq)^2>=16pq ,pq>=16
所以
(mn)min
=(p-1)(q-1)
=pq-(p+q)+1
=pq-(1/2)pq+1
=(1/2)pq(min)+1
=(1/2)*16+1
=9
所以:
Min(f(x1+x2))
=1-2/(mn+1)
=1-2/(9+1)
=4/5
A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2
1.已知a,b,c分别为三角形ABC三内角A,B,C所对的边,2(sinA-sinB),sinA-sinC,2(sinB
已知A,B,C为锐角三角形ABC的三个内角,求证:sinA+sinB+sinC+tanA+tanB+tanC>2π
已知三角形abc的三个内角a b c的对边分别为 a b c ,若sina sinb sinc 成等差数列.且2cos2
已知三角形ABC的三个内角A,B,C的对边分别为a,b,c,若sinA,sinB,sinC成等差数列,且2cos2B=8
设三角形abc的三的内角为ABC,且2B=A+C,sinB的平方=sinA乘sinC,则这个三角形的形状
已知A.B.C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0,求B0的大小.急,
已知A,B,C是三个内角,且满足2sinB=sinA+sinC,求B的最大值为B0?
已知A,B,C是△ABC的三个内角,且满足(sinA-sinB)(sinA+sinB)=sinC(2sinA-sinC)
设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x+(sinC-sinB)=0有等
设三角形ABC所对的边分别为a,b,c,且方程(sinA-sinB)x^2+(sinC-sinA)x+(sinB-sin
在三角形ABC中,角A、B、C满足2sinB=sinA+sinC,求