作业帮 > 数学 > 作业

A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:43:22
A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2
A,B,C,为三角形内角 求证sinA/2*sinB/2*sinC/2
1.
证明:
由于:A,B,C,为三角形内角
则:A+B+C=兀
则:
sin(A/2)•sin(B/2)•sin(C/2)
=sin(A/2)•sin(B/2)•cos((A+B)/2)
=1/2{cos[(A-B)/2]-cos[(A+B)/2]}*cos[(A+B)/2]
=1/2{-cos^2[(A+B)/2]+cos[(A-B)/2]•cos[(A+B)/2]}
≤1/2{-cos^2[(A+B)/2]+cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]}
=-1/2{cos^2[(A+B)/2]-cos[(A+B)/2]+1/4-1/4}
=-1/2{(cos[(A+B)/2]-1/2)^2-1/4}
=-1/2(cos(A+B)/2-1/2)^2+1/8
≤1/8
当且仅当cos(A+B)/2=1/2,A+B=120°时取等号.
2.由于:
4^x=(1+f(x))/(1-f(x))
整理得:
f(x)
=(4^x-1)/(4^x+1)
=1-2/(4^x+1)
故:
f(x1+x2)=1-2/(4^(x1+x2)+1)
所以只要求出4^(x1+x2)最小值即可
设:4^x1=m,4^x2=n,
则:4^(x1+x2)=mn
则:
f(x1+x2)
=1-2/(4^(x1+x2)+1)
=1-2/(mn+1)
又:
f(x1)=1-2/(4^x1+1)=1-2/(m+1)
f(x2)=1-2/(4^x2+1)=1-2/(n+1)
所以由f(x1)+f(x2)=1
得:1-2/(m+1)+1-2/(n+1)=1
2/(m+1)+2/(n+1)=1
设m+1=p,n+1=q
则:2/p+2/q=1,pq=2(p+q)>=4根号pq
即有(pq)^2>=16pq ,pq>=16
所以
(mn)min
=(p-1)(q-1)
=pq-(p+q)+1
=pq-(1/2)pq+1
=(1/2)pq(min)+1
=(1/2)*16+1
=9
所以:
Min(f(x1+x2))
=1-2/(mn+1)
=1-2/(9+1)
=4/5