作业帮 > 综合 > 作业

(2014•上海模拟)已知数列{an}的通项公式为an=25-n,数列{bn}的通项公式为bn=n+k,设cn=b

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 21:57:53
(2014•上海模拟)已知数列{an}的通项公式为an=25-n,数列{bn}的通项公式为bn=n+k,设cn=
b
(2014•上海模拟)已知数列{an}的通项公式为an=25-n,数列{bn}的通项公式为bn=n+k,设cn=b
若c5=a5,则a5>b5,则前面不会有bn的项,
∵{bn}递增,{an}递减,∴bi(i=1,2,3,4)<b5<a5<ai(i=1,2,3,4),
∵an递减,∴当n≥6时,必有cn≠an,即cn=bn
此时应有b6≥a5,∴a5>b5,即20>5+k,得k<-4,
b6≥a5,即6+k≥1,得k≥-5,
∴-5≤k<-4.
若c5=b5,则b5≥a5,同理,前面不能有bn项,
即a4≥b5>b4,当n≥6时,∵{bn}递增,{an}递减,
∴bn>b5≥a5>an(n≥6),
∴当n≥6时,cn=bn.由b5≥a5,即5+k≥1,得,k≥-4,
由a4≥b5,得2≥5+k,得k≤-3,即-4≤k≤-3.
综上得,-5≤k≤-3.
∴实数k的取值范围是[-5,-3].
故答案为:[-5,-3].