求(2X十X^2一X^3)/(X一4X^2十5X^4)中X到∞的极限
求(2X十X^2一X^3)/(X一4X^2十5X^4)中X到∞的极限
按(x-4)的乘幂展开多项式x^4-5x^3十x^2一3X十4(带过程)
(一x十2x的平方十5)十(4x的平方一3一6x)
a,b为常数,f(X)=X^2十4X十3,f(aX十b)=X^2十10X十24,则5a一b=?
已知1十x十x^2 十x^3=0,求x十x^2十x^3十x^4+x^5十x^6+x^7十x^8的值
(x的次方一X十4)X一(X一1)(x的次方十2)=x十7
已知x^2一5x十1二0,求x^4十1/x^4的值
求曲线y=(X^2十1)/(X一1)的渐近线
(7一2X十x平方)一(5十3X一2x平方)
1/(x^2一4x十3)十1/(x^2一8x十15)十1/(x^2-12x十35)十1/(x^2一16x十63)=
(1)(X一3)(X一2)十18=(X十9)(X十1) (2)(3X十4)(3X一4)<9(X一2
∫X/[X十根号(X^2一1)]dX=