不求导数,而利用罗尔定理证明:函数f(x)=x-2x–x+2在区间(–1,1)内必有点c,使f'(c)=0
不求导数,而利用罗尔定理证明:函数f(x)=x-2x–x+2在区间(–1,1)内必有点c,使f'(c)=0
关于罗尔定理在区间[0,8]内,对函数f(x)=(8x-x^2)^(1/3)罗尔定理A不成立B成立,f'(2)=0C成立
设函数f(x)=3ax²-2(a+c)x+c(a>c>0).函数f(x)在区间(0,1)内是否有零点?为什么?
在区间[-1,1]上满足罗尔定理的条件的函数是 A、f(x)=1/x^2 B、f(x)=x的绝对值 C、f(x)=x^3
证明:函数f(x)=x^2-1/x在区间(0,正无穷)上是增函数
证明函数f(x)=x的平方-2x在区间(1,+∞)内为增函数
利用定义证明f(x)=-x的平方+2x+3在区间(-无穷大,1)上是增函数
若二次函数f(x)=4x^2-2(p-2)-2p^2-p+1在区间【-1,1】内至少存在一点c,使f(c)>0,求实数p
在二次函数f(X)=4X^2-2(P-2)X-2P^2-P+1在区间[-1,1]内至少存在一点C(c,0),使f(c)
已知函数f(x)=log2(1+x^2) (1)证明函数f(x)是偶函数 (2)证明函数f(x)在区间(0,+∞)上是增
已知函数f(x)=(2x-b)/(x-1)^2,求导函数和单调区间
若f(x)=x*2+bx+c 且f(1)=0 f(3)=0 (1)求b与c的值(2)试证明函数f(x)在区间(2,正无穷