作业帮 > 数学 > 作业

已知函数f(x)=alnx+x^2-1,(1)求曲线y=f(x)在点(1,f(x))处的切线方程(2)若有关x的不等式f

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:25:26
已知函数f(x)=alnx+x^2-1,(1)求曲线y=f(x)在点(1,f(x))处的切线方程(2)若有关x的不等式f(x)≥b(x-1)
在【1/e,+&)上恒成立,其中a,b所满足的关系及a的取值范围
已知函数f(x)=alnx+x^2-1,(1)求曲线y=f(x)在点(1,f(x))处的切线方程(2)若有关x的不等式f
f'(x)=a/x+2x ,x=1 f(1)=0 f'(1)=a+2,切线方程 g(x)斜率为a+2且过点(1,0)代入可得
g(x)=(a+2)x -(a+2)
作差y=f(x)-g(x).再取导数 令导数为0 得到两根 由单调性 知在端点或在那个大根出有最小值
故令x=1/e处 和大根处分别代入y 令 y>=0即可求出a的范围.