作业帮 > 数学 > 作业

f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x}(x-2t)f(t)dt 试证:F(x)为偶函数,求过程

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:25:08
f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x}(x-2t)f(t)dt 试证:F(x)为偶函数,求过程和方法!
f(x)在(-∞,+∞)上连续且是偶函数,F(x)=∫[0,x}(x-2t)f(t)dt 试证:F(x)为偶函数,求过程
F(x)=∫[0,x] (x-2t)f(t) dt,
所以
F(-x)=∫[0,-x] (-x-2t)f(t) dt,
对积分做换元s=-t,得
F(-x)=∫[0,-x] (-x-2t)f(t) dt
=∫[0,x] (-x+2s)f(-s) -ds
=∫[0,x] (x-2s)f(s) ds
=∫[0,x] (x-2t)f(t) dt(积分变量可随意更换)
=F(x),
所以F(x)也是偶函数