设椭圆x2/a2+y2/b2=1(a大于b大于0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:57:36
设椭圆x2/a2+y2/b2=1(a大于b大于0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点
O为坐标原点,若直线AP与BP的斜率之积为-1/2,则椭圆的离心率是多少
O为坐标原点,若直线AP与BP的斜率之积为-1/2,则椭圆的离心率是多少
A(-a,0),B(a,0);设P(x,y)
由题意得:y²/(x²-a²)=-1/2
即:2y²=a²-x² ①
又点P在椭圆上,所以:x²/a²+y²/b²=1 ②
①式两边同除a²,得:2y²/a²=1-x²/a²,得:x²/a²=1-2y²/a²
代入②得:1-2y²/a²+y²/b²=1
y²(1/b²-2/a²)=0
因为P是异于A,B的点,所以,y≠0
则:1/b²-2/a²=0
得:a²=2b²
则:c²=a²-b²=b²
所以,离心率:e²=c²/a²=1/2
则离心率为√2/2
由题意得:y²/(x²-a²)=-1/2
即:2y²=a²-x² ①
又点P在椭圆上,所以:x²/a²+y²/b²=1 ②
①式两边同除a²,得:2y²/a²=1-x²/a²,得:x²/a²=1-2y²/a²
代入②得:1-2y²/a²+y²/b²=1
y²(1/b²-2/a²)=0
因为P是异于A,B的点,所以,y≠0
则:1/b²-2/a²=0
得:a²=2b²
则:c²=a²-b²=b²
所以,离心率:e²=c²/a²=1/2
则离心率为√2/2
设椭圆x2/a2+y2/b2=1(a大于b大于0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点
设椭圆x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1,F2.点p(a,b)满足|PF1|=|F1F2|
设椭圆:C:x2/a2+y2/b2=1(a大于b大于0)的左焦点为F,上顶点为A …… 垂直的直线分别交椭圆C
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交Y轴于点
椭圆X2/a2十Y2/b2=1(a>b>0)的右焦点为F,右顶点、上顶点分别为A、B,且...
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直于X轴,直线AB交Y轴
椭圆 x2 a2 + y2 b2 =1(a>b>0)的左,右顶点分别是A,B,
设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P
A、B分别是椭圆x2/a2+y2/b2=1的左、右顶点,F是右焦点,P是异于A、B的一点,直线AP与BP分别交直线
设A是椭圆x2/a2+y2/b2=1(a大于b大于0)长轴上的一个顶点,若椭圆存在点P,使AP垂直OP,求椭圆离心率e的
已知椭圆C1:x2/a2+y2/b2=1(a大于b大于0)的右焦点为F,上顶点A,P为C1上任意一点,MN
设椭圆x2/a2+y2/b2=1(a>b>0)的左`,右焦点分别为F1,F2,若直线x=a2/c上存在点P,使PF1的中