作业帮 > 数学 > 作业

在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于F.求证:BE=CF+AE.今天作业,速答.急急急急急急!

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:04:27
在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于F.求证:BE=CF+AE.今天作业,速答.急急急急急急!

在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于F.求证:BE=CF+AE.今天作业,速答.急急急急急急!
∵ABCD是正方形∴AB=BC,AB∥CD∴∠CFB=∠ABF将RT△BCF绕B旋转到BC和AB重合,得Rt△BCF≌△BAM∴∠CBF=∠ABM,∠BCF=∠BAM=90°,即M、A、E在一条直线上∠CFB=∠AMB=∠EMBCF=AM∵BF平分∠CBE∴∠CBF=∠EBF=∠ABM∴∠ABM+∠ABE=∠ABE+∠EBF即∠MBE=∠ABF=EMB∴ME=BE∴BE=AM+AE=CF+AE
再问: Rt△BCF≌△BAM怎么证得
再答: 将RT△BCF绕B旋转到BC和AB重合,得Rt△BCF≌△BAM