黑洞的发现?人们借助高倍望远镜都发现不了黑洞~黑洞是怎样被发现的~
来源:学生作业帮 编辑:神马作文网作业帮 分类:物理作业 时间:2024/11/10 14:56:19
黑洞的发现?
人们借助高倍望远镜都发现不了黑洞~黑洞是怎样被发现的~
人们借助高倍望远镜都发现不了黑洞~黑洞是怎样被发现的~
黑洞,天文学名词.所谓“黑洞”,是引力场很强的一种天体,就连光也不能逃脱出来.等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了.到这时,恒星就变成了黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出.由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞.然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在.
广义相对论预言的一种特别致密的暗天体[1].大质量恒星在其演化末期发生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子(即组成光的微粒,速度c=3.0×10^8m/s)在内的任何物质只能进去而无法逃脱.形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量.除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可能存在于星系中央.(参考:《宇宙新视野》)黑洞可以经由电子仪器观查到.
黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故.我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞.虽然这么说,但黑洞还是有它的边界,即“事件视界(视界)”.据猜测,黑洞是死亡恒星的演化物,是在特殊的大质量超巨星坍缩时产生的.另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的.(有关参考:《时间简史》——霍金著和《果壳中的宇宙》——霍金著)
我们知道,太阳现在的半径是七十万公里.假如它变成一个黑洞,半径就的大大缩小.缩到多少?只能有三公里.地球就更可怜了,它现在半径是六千多公里.假如变成黑洞,半径就的缩小到只有几毫米.那里会有这么大的压缩机,能把太阳 地球缩小的这么!这简直象《天方夜谭》里的神话故事,黑洞这东西实在太离奇古怪了.但是,上面说的这些可不是凭空想象出来的,而是根据严格的科学理论的出来的.原来,黑洞也是由晚年的恒星变成的,象质量比较小的恒星,到了晚年,会变成白矮星;质量比较大的会形成中子星.现在我们再加一句,质量更大的恒星,到了晚年,最后就会变成黑洞.所以,总结起来说,白矮星 中子星和黑洞,就是晚年恒星的三种变化结果.
按照黑洞定义,它不能发出光,我们何以希望能检测到它呢?这有点像在煤库里找黑猫.庆幸的是,有一种办法.正如约翰·米歇尔在他1783年的先驱性论文中指出的,黑洞仍然将它的引力作用到它周围的物体上.天文学家观测了许多系统,在这些系统中,两颗恒星由于相互之间的引力吸引而互相围绕着运动.他们还看到了,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统.人们当然不能立即得出结论说,这伴星即为黑洞——它可能仅仅是一颗太暗以至于看不见的恒星而已.
还有其他不用黑洞来解释天鹅X-1的模型,但所有这些都相当牵强附会.黑洞看来是对这一观测的仅有的真正自然的解释.尽管如此,我和加州理工学院的基帕.索恩打赌说,天鹅X-1不包含一个黑洞!这对我而言是一个保险的形式.我对黑洞作了许多研究,如果发现黑洞不存在,则这一切都成为徒劳.但在这种情形下,我将得到赢得打赌的安慰,他要给我4年的杂志《私人眼睛》.如果黑洞确实存在,基帕.索思将得到1年的《阁楼》 .我们在1975年打赌时,大家80%断定,天鹅座是一黑洞.迄今,我可以讲大约95%是肯定的,但输赢最终尚未见分晓.
现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅X-1的黑洞的证据.然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了.黑洞的数目甚至比可见恒星的数目要大得相当多. 单就我们的星系中,大约总共有1千亿颗可见恒星.这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动速率,单是可见恒星的质量是不足够的.我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的10万倍.星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去.正如同在天鹅X-1情形那样,气体将以螺旋形轨道向里运动并被加热, 虽然不如天鹅X-1那种程度会热到发出X射线,但是它可以用来说明星系中心观测到的非常紧致的射电和红外线源.
广义相对论预言的一种特别致密的暗天体[1].大质量恒星在其演化末期发生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子(即组成光的微粒,速度c=3.0×10^8m/s)在内的任何物质只能进去而无法逃脱.形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量.除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可能存在于星系中央.(参考:《宇宙新视野》)黑洞可以经由电子仪器观查到.
黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故.我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞.虽然这么说,但黑洞还是有它的边界,即“事件视界(视界)”.据猜测,黑洞是死亡恒星的演化物,是在特殊的大质量超巨星坍缩时产生的.另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的.(有关参考:《时间简史》——霍金著和《果壳中的宇宙》——霍金著)
我们知道,太阳现在的半径是七十万公里.假如它变成一个黑洞,半径就的大大缩小.缩到多少?只能有三公里.地球就更可怜了,它现在半径是六千多公里.假如变成黑洞,半径就的缩小到只有几毫米.那里会有这么大的压缩机,能把太阳 地球缩小的这么!这简直象《天方夜谭》里的神话故事,黑洞这东西实在太离奇古怪了.但是,上面说的这些可不是凭空想象出来的,而是根据严格的科学理论的出来的.原来,黑洞也是由晚年的恒星变成的,象质量比较小的恒星,到了晚年,会变成白矮星;质量比较大的会形成中子星.现在我们再加一句,质量更大的恒星,到了晚年,最后就会变成黑洞.所以,总结起来说,白矮星 中子星和黑洞,就是晚年恒星的三种变化结果.
按照黑洞定义,它不能发出光,我们何以希望能检测到它呢?这有点像在煤库里找黑猫.庆幸的是,有一种办法.正如约翰·米歇尔在他1783年的先驱性论文中指出的,黑洞仍然将它的引力作用到它周围的物体上.天文学家观测了许多系统,在这些系统中,两颗恒星由于相互之间的引力吸引而互相围绕着运动.他们还看到了,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统.人们当然不能立即得出结论说,这伴星即为黑洞——它可能仅仅是一颗太暗以至于看不见的恒星而已.
还有其他不用黑洞来解释天鹅X-1的模型,但所有这些都相当牵强附会.黑洞看来是对这一观测的仅有的真正自然的解释.尽管如此,我和加州理工学院的基帕.索恩打赌说,天鹅X-1不包含一个黑洞!这对我而言是一个保险的形式.我对黑洞作了许多研究,如果发现黑洞不存在,则这一切都成为徒劳.但在这种情形下,我将得到赢得打赌的安慰,他要给我4年的杂志《私人眼睛》.如果黑洞确实存在,基帕.索思将得到1年的《阁楼》 .我们在1975年打赌时,大家80%断定,天鹅座是一黑洞.迄今,我可以讲大约95%是肯定的,但输赢最终尚未见分晓.
现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅X-1的黑洞的证据.然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了.黑洞的数目甚至比可见恒星的数目要大得相当多. 单就我们的星系中,大约总共有1千亿颗可见恒星.这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动速率,单是可见恒星的质量是不足够的.我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的10万倍.星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去.正如同在天鹅X-1情形那样,气体将以螺旋形轨道向里运动并被加热, 虽然不如天鹅X-1那种程度会热到发出X射线,但是它可以用来说明星系中心观测到的非常紧致的射电和红外线源.