作业帮 > 数学 > 作业

公式证明:周长相等的矩形和正方形,为什么正方形面积最大?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:48:04
公式证明:周长相等的矩形和正方形,为什么正方形面积最大?
用那个 a的平方 ,b的平方 ,根号下ab,证明
公式证明:周长相等的矩形和正方形,为什么正方形面积最大?
令长方形的边长为a,b,则周长=2a+2b
正方形周长=长方形周长=2a+2b
正方形边长=(2a+2b)/4=(a+b)/2
长方形面积:ab
正方形面积 = {(a+b)/2}^2 = 1/4(a^2+b^2+2ab) = 1/4 { (a-b)^2+2ab+2qb } = 1/4(a-b)^2 + ab
长方形的长≠宽
∴a-b≠0
∴(a-b)^2>0
∴正方形面积 = 1/4(a-b)^2 + ab > ab = 长方形面积