已知数列{an}满足an+1=(3an+1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:26:46
已知数列{an}满足an+1=(3an+1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
题目错了……重发
已知数列{an}满足an+1=(an-1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
题目错了……重发
已知数列{an}满足an+1=(an-1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
a(n+1)=[a(n)-1]/[a(n)+3],
a(n+1)+1=[a(n)-1]/[a(n)+3] +1=[2a(n)+2]/[a(n)+3]=2[a(n)+1]/[a(n)+3],
若a(n+1)+1=0,则a(n)+1=0,...,a(1)+1=0,与a(1)=-1/3矛盾.
因此,a(n)+1 不为0.
1/[a(n+1)+1] = [a(n)+3]/[2a(n)+2] = [a(n)+1+2]/[2a(n)+2] = 2/[2a(n)+2] + [a(n)+1]/[2a(n)+2]
=1/[a(n)+1] + 1/2,
{1/[a(n)+1]}是首项为1/[a(1)+1]=1/[1-1/3]=3/2,公差为1/2的等差数列.
1/[a(n)+1] = 3/2 +(n-1)/2 = (n+2)/2,
a(n)+1=2/(n+2),
a(n)=2/(n+2) - 1 = -n/(n+2)
a(n+1)+1=[a(n)-1]/[a(n)+3] +1=[2a(n)+2]/[a(n)+3]=2[a(n)+1]/[a(n)+3],
若a(n+1)+1=0,则a(n)+1=0,...,a(1)+1=0,与a(1)=-1/3矛盾.
因此,a(n)+1 不为0.
1/[a(n+1)+1] = [a(n)+3]/[2a(n)+2] = [a(n)+1+2]/[2a(n)+2] = 2/[2a(n)+2] + [a(n)+1]/[2a(n)+2]
=1/[a(n)+1] + 1/2,
{1/[a(n)+1]}是首项为1/[a(1)+1]=1/[1-1/3]=3/2,公差为1/2的等差数列.
1/[a(n)+1] = 3/2 +(n-1)/2 = (n+2)/2,
a(n)+1=2/(n+2),
a(n)=2/(n+2) - 1 = -n/(n+2)
已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列
已知数列{an}满足an+1=(3an+1)/(an+3),a1=-1/3 求证1/(an)+1为等差数列,求an
已知数列an满足an+1=3an/an+3求证{1/an}是等差数列.当a1=1/2时求a100
已知等差数列{an}中,a1=2.an+1=an+3分之an 求an
已知数列{an}满足a1=2,a(n+1)=(3an-2)/(2an-1),求证{1/(an-1)}是等差数列,并求数列
已知数列{an}满足a1=2,an+1=2an/an+2.求证数列{1/an}是否为等差数列 并求出an
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an
已知a1=1,2an+1*an+3an+1+an+2=0 求证{1/an+1}为等差数列(2)求an
已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an
已知数列an满足a1=1,an+小1=3an+2*3^n,求证{an/3^n-1}成等差数列,求an的通项公式,求an的