积分是微分的反导函数,它们之间为什么是这种关系?是怎样证明的呢?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 12:59:51
积分是微分的反导函数,它们之间为什么是这种关系?是怎样证明的呢?
已知一个函数F(x)导数为f(x),则对f(x)积分就能得到F(x);反之,若已知函数f(x)的积分F(x),则对F(x)求导就能得到f(x),所以积分和微分互逆.
再问: 你这是已知答案,不是证明呀。
再答: 设∫f(x)dx=F(x)+C, 故(∫f(x)dx)'=[F(x)+C]'=f(x),这表明函数f(x)先积分再微分就回到f(x)了; 反之, ∫F'(x)dx=F(x)+C,这是对F(x)先求导再积分,又回到F(x)(不过这里多了一个任意常数)
再问: 这个还是没看懂。 导数有一个通用定义式:f'(x)=lim { f(x+h)-f(x)}/h (h->0,这里打不到lim下面去),这个定义式 是很好理解的,书上也给出了推理过程。我们可以用这个定义式求微分。 但是,积分有没有这样一个通用定义式呢?有的话是怎样推理得来的?
再答: 是这样的,函数的不定积分定义为函数的一个原函数+C,定积分有一个极限的定义形式: ∫[a,b]f(x)dx=lim∑f(ζi)△xi,这个定义就远比导数的定义复杂得多了。 不定积分和定积分是不同的。
再问: 定积分的公式是推导得来的,这个书上有,也很好理解。 但是: 不定积分不可能是靠定义得来的,只有公里是不需要证明的。其它的定理,定义是需要证明才能确定它们的准确性的。
再答: 不是这样的,定义就是公理,不需要证明,它是指满足某种条件就是什么什么之类的
再问: 你这是已知答案,不是证明呀。
再答: 设∫f(x)dx=F(x)+C, 故(∫f(x)dx)'=[F(x)+C]'=f(x),这表明函数f(x)先积分再微分就回到f(x)了; 反之, ∫F'(x)dx=F(x)+C,这是对F(x)先求导再积分,又回到F(x)(不过这里多了一个任意常数)
再问: 这个还是没看懂。 导数有一个通用定义式:f'(x)=lim { f(x+h)-f(x)}/h (h->0,这里打不到lim下面去),这个定义式 是很好理解的,书上也给出了推理过程。我们可以用这个定义式求微分。 但是,积分有没有这样一个通用定义式呢?有的话是怎样推理得来的?
再答: 是这样的,函数的不定积分定义为函数的一个原函数+C,定积分有一个极限的定义形式: ∫[a,b]f(x)dx=lim∑f(ζi)△xi,这个定义就远比导数的定义复杂得多了。 不定积分和定积分是不同的。
再问: 定积分的公式是推导得来的,这个书上有,也很好理解。 但是: 不定积分不可能是靠定义得来的,只有公里是不需要证明的。其它的定理,定义是需要证明才能确定它们的准确性的。
再答: 不是这样的,定义就是公理,不需要证明,它是指满足某种条件就是什么什么之类的
积分是微分的反导函数,它们之间为什么是这种关系?是怎样证明的呢?
为什么说积分是微分的逆运算.
为什么说积分是微分的逆运算
多元函数之间的极限,连续,偏导存在,可微分是如何呢推导的?
自变量变化,而因变量始终不变,它们之间的关系是函数关系吗?为什么?
积分和微分之间的关系?
多元函数中,方向导数与全微分存在之间的关系是神马?
微分的导数是积分 积分的原函数是微分 这句话大概对吗?有错吗
双曲函数与三角函数三角函数就是圆函数,双曲函数和三角函数之间有类似的关系.如果想知道一个双曲函数的公式或者是微分积分,怎
一个关于微分的问题dx=d(x+1)是为什么?那为什么dx不等于d(2x)呢?请具体解释一下这类变化之间的关系.
微分,积分,定积分,微积分等之间有什么包括与被包括的关系?为什么?
为什么不定积分的记法里,积分号下的最后乘出来是原函数的微分啊.是为了和微分相对立吗?