作业帮 > 综合 > 作业

lim【x→0+】(1-cosx)^(1/lnx)

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 01:32:25
lim【x→0+】(1-cosx)^(1/lnx)
lim【x→0+】(1-cosx)^(1/lnx)
y=(1-cosx)^(1/lnx)
lny=(1/lnx)ln(1-cosx)=(x²/2)/lnx =x²/(2lnx)
lim【x→0+】lny
=lim【x→0+】x²/(2lnx)
=lim【x→0+】(2x)/(2/x)
=lim【x→0+】x²
=0
故lim【x→0+】=1