作业帮 > 数学 > 作业

若椭圆x^2/16+y^2/9=1与双曲线x^2/(m^2-8)-y^2/2m=1有相同焦点,则m的值?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 19:12:22
若椭圆x^2/16+y^2/9=1与双曲线x^2/(m^2-8)-y^2/2m=1有相同焦点,则m的值?
若椭圆x^2/16+y^2/9=1与双曲线x^2/(m^2-8)-y^2/2m=1有相同焦点,则m的值?
∵x^2/16+y^2/9=1
c^2=16-9=7
∴双曲线x^2/(m^2-8)-y^2/2m=1
(m^2-8)+2m=7 且m^2-8>0,2m>0
==>m^2+2m-15=0
==>m=-5(舍去), m=3
所以m=3
再问: 为什么舍去-5?
再答: 椭圆、双曲线焦点相同,椭圆焦点在x轴,双曲线焦点也要在x轴, a^2=m^2-8>0,b^2=2m>0