用数学归纳法证明:1-3+5-7+...+(-1)^N-1(2N-1)=(-1)^N-1*N
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 16:51:40
用数学归纳法证明:1-3+5-7+...+(-1)^N-1(2N-1)=(-1)^N-1*N
当N=1时,左边=1,右边,(-1)^N-1*N=(-1)^0*1=1*1=1,命题成立.假定N=K时成立.那么当N=K+1时,
左边=【1-3+5-7+...+(-1)^K-1(2K-1)】+(-1)^(K+1)-1[2(K+1)-1]
=1-3+5-7+...(-1)^K-1(2K-1)+(-1)^K(2K+1)
=(-1)^K-1*K+(-1)^K(2K+1)
=(-1)^K-1*K+(-1)^K-1*(-1)^(1)(2K+1) 其中的(-1)^K是如何过度至(-1)^K-1的,K-1为何能表示(-1)的指数?
(2K+1)是怎样过度至(-1)^(1)(2K+1)的,(-1)^(1)(2K+1)又是如何过度至(-2K-1)?(-1)和(1)是怎么得出来的?(1)(2K+1)为何能表示(-1)的指数?
当N=1时,左边=1,右边,(-1)^N-1*N=(-1)^0*1=1*1=1,命题成立.假定N=K时成立.那么当N=K+1时,
左边=【1-3+5-7+...+(-1)^K-1(2K-1)】+(-1)^(K+1)-1[2(K+1)-1]
=1-3+5-7+...(-1)^K-1(2K-1)+(-1)^K(2K+1)
=(-1)^K-1*K+(-1)^K(2K+1)
=(-1)^K-1*K+(-1)^K-1*(-1)^(1)(2K+1) 其中的(-1)^K是如何过度至(-1)^K-1的,K-1为何能表示(-1)的指数?
(2K+1)是怎样过度至(-1)^(1)(2K+1)的,(-1)^(1)(2K+1)又是如何过度至(-2K-1)?(-1)和(1)是怎么得出来的?(1)(2K+1)为何能表示(-1)的指数?
(-1)^(k-1)*k+(-1)^k*(2k+1)=(-1)(-1)^k*k+(-1)^k*(2k+1)=(-1)^k*(k+1)
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明:1-3+5-7+...+(-1)^N-1(2N-1)=(-1)^N-1*N
用数学归纳法证明1+4+7+...+(3n-2)=[n(3n-1)]/2
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
用数学归纳法证明:1*3*5*.*(2n-1)*2^n=(n+1)(n+2).(2n)(n属于N*)
用数学归纳法证明等式"1+2+3+.+(2n+1)=(n+1)(2n+1)(n∈N
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
用数学归纳法证明1*2+2*5+...+n(3n-1)=n^2(n+1) 每一步都要!
用数学归纳法证明:1*2+2*5+...+n(3n-1)=n^2(n+1)