已知,如图,等边△ABC的边长为2,且PA=PC,∠APC=120°,现有∠MPN=60°,其两边分别交BC、AB于M、
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 00:16:40
已知,如图,等边△ABC的边长为2,且PA=PC,∠APC=120°,现有∠MPN=60°,其两边分别交BC、AB于M、N,连接MN,将∠MPN绕着P点旋转(0°
答:△BMN的周长始终没有变化,它的周长就是AB+CB=4.
如图
延长BC到D,使CD=AN,连接PD.
∵∠B=60°,∠APC=120°.
∴根据平面四边形内角和为360°.
∴∠PAN=∠PCD.
∵AN=CD,∠PAN=∠PCD,AP=PC
∴△PAN≌△PCD(SAS)
∴PN=PD(其实上述证明也可用旋转)
∠APN=∠CPD
∵∠APC=120°
∠NPM=60°
∴∠APN+∠MPC=60°
∴∠NPM=∠DPM
又∵PN=PD,PM=PM
∴△NPM≌△DPM(SAS)
∴MN=MD=MC+CD=MC+AN
∴△BNM周长=BN+MN+BM=BN+AN+MC+BM=4
∴△BMN周长不变
证明完毕
思路:先通过全等或旋转得到△APN≌△CPD
再根据角度、边证明△PNM≌△PDM
得出MN就是AN与MC的和
则△BMN周长就是AB+BC=4
所以无论N在线段AB,M在线段BC上怎样运动,△BMN周长都是固定的
若不限制M、N的运动,虽然MC、AN与MN关系不一样,但是△BMN周长仍是不变
如图
延长BC到D,使CD=AN,连接PD.
∵∠B=60°,∠APC=120°.
∴根据平面四边形内角和为360°.
∴∠PAN=∠PCD.
∵AN=CD,∠PAN=∠PCD,AP=PC
∴△PAN≌△PCD(SAS)
∴PN=PD(其实上述证明也可用旋转)
∠APN=∠CPD
∵∠APC=120°
∠NPM=60°
∴∠APN+∠MPC=60°
∴∠NPM=∠DPM
又∵PN=PD,PM=PM
∴△NPM≌△DPM(SAS)
∴MN=MD=MC+CD=MC+AN
∴△BNM周长=BN+MN+BM=BN+AN+MC+BM=4
∴△BMN周长不变
证明完毕
思路:先通过全等或旋转得到△APN≌△CPD
再根据角度、边证明△PNM≌△PDM
得出MN就是AN与MC的和
则△BMN周长就是AB+BC=4
所以无论N在线段AB,M在线段BC上怎样运动,△BMN周长都是固定的
若不限制M、N的运动,虽然MC、AN与MN关系不一样,但是△BMN周长仍是不变
已知,如图,等边△ABC的边长为2,且PA=PC,∠APC=120°,现有∠MPN=60°,其两边分别交BC、AB于M、
如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(
如图,已知P为∠AOB上的一点,OP=2.以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠AOB=∠MPN=α
如图,已知点从M,N分别在等边△ABC的边BC、CA上,AM,BN交于点Q,且∠BQM=60°.求证:BM=CN.
已知,如图,在Rt三角形ABC中,AC⊥BC且AC=BC,P为△ABC内一点,且PA=1,PB=3,PC=2,求∠APC
如图,已知P为∠AOB的边OA上的一点,且OP=2.以P为顶点的∠MPN的两边分别交射线OB于M,N两点,且
已知P为∠AOB的边OA上一点,OP =2,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=
如图,已知菱形ABCD的边长为a,∠ABC=60°,PC⊥平面ABCD,且PC=a,E为PA的中点.
如图,过边长为2的等边△ABC的边AB上点P作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,
如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是 ___ °
三棱锥P-ABC中,侧面PAC⊥底面ABC,PA=BC=1,PC=AB=2,∠APC=60°,D为AC中点.
已知等边△ABC中有一点P,∠APC=110°,∠APB=120°,求以线段PA|,PB,PC为边构成的三角形的三个内角