作业帮 > 数学 > 作业

1/2+(1/3+2/3)+(1/4+2/4+3/4)+···+(1/10+2/10+···9/10)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:35:30
1/2+(1/3+2/3)+(1/4+2/4+3/4)+···+(1/10+2/10+···9/10)
还有这道(1+1/2)*(1+1/4)*(1+1/6)*···*(1+1/10)*(1-1/3)*(1-1/5)*···*(1-1/9)
1/2+(1/3+2/3)+(1/4+2/4+3/4)+···+(1/10+2/10+···9/10)
计算每一项:1/k+2/k+..+(k-1)/k=1/k*[1+2+..+(k-1)]=1/k*k(k-1)/2=(k-1)/2
所以1/2+(1/3+2/3)+(1/4+2/4+3/4)+···+(1/10+2/10+···9/10)
=1/2+2/2+3/2+..+9/2
=1/2*(1+2+..+9)
=1/2*9*10/2
=45/2
(1+1/2)*(1+1/4)*(1+1/6)*···*(1+1/10)*(1-1/3)*(1-1/5)*···*(1-1/9)
顺序的每一个+项与后面的每一个-项正好互为倒数:
(1+1/2)*(1-1/3)=3/2*2/3=1
(1+1/4)*(1-1/5)=1
(1+1/6)*(1-1/7)=1
(1+1/8)*(1-1/9)=1
这样剩下中间项1+1/10=11/10
所以原式=11/10.