作业帮 > 数学 > 作业

∫(x^2)·(e^x^2)dx的值?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:27:57
∫(x^2)·(e^x^2)dx的值?
∫(x^2)·(e^x^2)dx的值?
原函数不是初等函数
先用分部积分法:∫x^2e(x^2)dx=(1/2)∫xd(e^x^2)=(1/2)xe^(x^2)-(1/2)∫e^x^2dx,这里求∫e^x^2dx,设t=x^2,dx=1/[2t^(1/2)]
原式=∫e^tdt/t^(1/2)
用泰勒展开式e^t=1+t+t^2/2!+t^3/3!+..+t^n/n!
=∫[1/t^(1/2)+t^(1/2)+t^(3/2)/2!+t^(5/2)/3!+..+t^(n-1/2)/n!]dt 逐项积分:
=2t^(1/2)+(2/3)t^(3/2)+(2/5)t^(5/2)/2!+(2/7)t^(7/2)/3!+..+(n+1/2)*t^(n+1/2)/n!+C
所以∫x^2e^(x^2)dx
=(1/2)xe^(x^2)-(1/4)[2*x+(2/3)x^3+(2/5)x^5/2!+(2/7)x^7/3!+..+(n+1/2)x^(2n+1)/n!] +C
再问: 没学过泰勒展开式肿么办。
再答: LZ在读高中还是大学还是...? 本人现在在读高二,也没学,都是自学的...